See axolotl config
axolotl version: 0.4.1
base_model: ./prince-canuma_Ministral-8B-Instruct-2410-HF
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: NewEden/Story-writing-Alt-Data-sharegpt
type: sharegpt
conversation: chatml
- path: NewEden/Misc-Phase-Sharegpt
type: sharegpt
conversation: chatml
- path: NewEden/Synth-RP-Phase-sharegpt
type: sharegpt
conversation: chatml
- path: NewEden/Claude-instruct-Merged-Sharegpt
type: sharegpt
conversation: chatml
- path: NewEden/Intelligence-Phase-Sharegpt
type: sharegpt
conversation: chatml
chat_template: chatml
output_dir: ./ministral_outputs
#adapter: lora
#lora_r: 128
#lora_alpha: 16
#lora_dropout: 0.05
#lora_target_linear: true
#peft_use_rslora: true
#lora_modules_to_save:
#- embed_tokens
#- lm_head
sequence_len: 16384
#sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: Ministral-Tor
wandb_entity:
wandb_watch:
wandb_name: run-1
wandb_log_model:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
#auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 30
eval_table_size:
saves_per_epoch: 1
weight_decay: 0.1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
#deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
#deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
fsdp:
fsdp_config:
special_tokens:
pad_token: "<pad>"
ministral_outputs
This model was trained from scratch on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 2
Training results
Framework versions
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.