metadata
license: cc-by-4.0
language:
- it
GeNTE Evaluator
The Gender-Neutral Translation (GeNTE) Evaluator is a sequence classification model used for evaluating inclusive translations into Italian for the GeNTE corpus. It is built by fine-tuning the RoBERTa-based UmBERTo model. More details on the training process and the reproducibility can be found in the official repository ad the paper.
Usage
You can use the GeNTE Evaluator as follows:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# load the tokenizer of UmBERTo
tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-wikipedia-uncased-v1", do_lower_case=False)
# load GeNTE Evaluator
model = AutoModelForSequenceClassification.from_pretrained("FBK-MT/GeNTE-evaluator")
# neutral example
sample = "Condividiamo il parere di chi ha presentato la relazione
che ha posto notevole enfasi sull'informazione in relazione ai rischi e sulla trasparenza,
in particolare nel campo sanitario e della sicurezza."
input = tokenizer(sample, return_tensors='pt')
with torch.no_grad():
probs = model(**input).logits
predicted_label = torch.argmax(probs, dim=1).item()
print(predicted_label) # 0 is neutral, 1 is gendered
Citation
@inproceedings{piergentili-etal-2023-hi,
title = "Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the {G}e{NTE} Corpus",
author = "Piergentili, Andrea and
Savoldi, Beatrice and
Fucci, Dennis and
Negri, Matteo and
Bentivogli, Luisa",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.873",
doi = "10.18653/v1/2023.emnlp-main.873",
pages = "14124--14140",
}
Contributions
Thanks to @dfucci for adding this model.