|
--- |
|
license: cc-by-4.0 |
|
language: |
|
- it |
|
--- |
|
# GeNTE Evaluator |
|
|
|
The **Gender-Neutral Translation (GeNTE) Evaluator** is a sequence classification model used for evaluating inclusive translations into Italian for the [GeNTE corpus](https://huggingface.co/datasets/FBK-MT/GeNTE). |
|
It is built by fine-tuning the RoBERTa-based [UmBERTo model](https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1). |
|
More details on the training process and the reproducibility can be found in the [official repository](https://github.com/hlt-mt/fbk-NEUTR-evAL/blob/main/solutions/GeNTE.md) ad the [paper](https://aclanthology.org/2023.emnlp-main.873/). |
|
|
|
## Usage |
|
|
|
You can use the GeNTE Evaluator as follows: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
# load the tokenizer of UmBERTo |
|
tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-wikipedia-uncased-v1", do_lower_case=False) |
|
|
|
# load GeNTE Evaluator |
|
model = AutoModelForSequenceClassification.from_pretrained("FBK-MT/GeNTE-evaluator") |
|
|
|
# neutral example |
|
sample = "Condividiamo il parere di chi ha presentato la relazione |
|
che ha posto notevole enfasi sull'informazione in relazione ai rischi e sulla trasparenza, |
|
in particolare nel campo sanitario e della sicurezza." |
|
input = tokenizer(sample, return_tensors='pt') |
|
|
|
with torch.no_grad(): |
|
probs = model(**input).logits |
|
|
|
predicted_label = torch.argmax(probs, dim=1).item() |
|
print(predicted_label) # 0 is neutral, 1 is gendered |
|
``` |
|
|
|
## Citation |
|
|
|
``` |
|
@inproceedings{piergentili-etal-2023-hi, |
|
title = "Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the {G}e{NTE} Corpus", |
|
author = "Piergentili, Andrea and |
|
Savoldi, Beatrice and |
|
Fucci, Dennis and |
|
Negri, Matteo and |
|
Bentivogli, Luisa", |
|
editor = "Bouamor, Houda and |
|
Pino, Juan and |
|
Bali, Kalika", |
|
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2023", |
|
address = "Singapore", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2023.emnlp-main.873", |
|
doi = "10.18653/v1/2023.emnlp-main.873", |
|
pages = "14124--14140", |
|
} |
|
``` |
|
|
|
## Contributions |
|
|
|
Thanks to [@dfucci](https://huggingface.co/dfucci) for adding this model. |