metadata
library_name: transformers
language:
- fr
license: mit
base_model: bofenghuang/whisper-large-v3-french
tags:
- generated_from_trainer
datasets:
- PraxySante/PxCorpus-PxSLU
metrics:
- wer
model-index:
- name: Whisper Large v3 French PxCorpus - Fine-tuning test
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PxCorpus PxSLU
type: PraxySante/PxCorpus-PxSLU
args: 'config: fr, split: test'
metrics:
- name: Wer
type: wer
value: 4.112554112554113
Whisper Large v3 French PxCorpus - Fine-tuning test
This model is a fine-tuned version of bofenghuang/whisper-large-v3-french on the PxCorpus PxSLU dataset. It achieves the following results on the evaluation set:
- Loss: 0.1903
- Wer: 4.1126
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0016 | 8.1967 | 1000 | 0.1864 | 5.1948 |
0.0003 | 16.3934 | 2000 | 0.1773 | 5.1948 |
0.0001 | 24.5902 | 3000 | 0.1860 | 4.1126 |
0.0 | 32.7869 | 4000 | 0.1903 | 4.1126 |
Framework versions
- Transformers 4.44.1
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1