10k-finetune / README.md
ktangri's picture
End of training
9df70ac
metadata
license: mit
base_model: MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: 10k-finetune
    results: []

10k-finetune

This model is a fine-tuned version of MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3357
  • Accuracy: 0.8730

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4093 0.33 20 0.4616 0.8115
0.2952 0.66 40 0.3984 0.8238
0.2775 0.99 60 0.3357 0.8730
0.1836 1.32 80 0.3674 0.8402
0.1772 1.65 100 0.3687 0.8361
0.1502 1.98 120 0.3730 0.8443
0.1245 2.31 140 0.3966 0.8402
0.1226 2.64 160 0.3719 0.8566
0.1166 2.98 180 0.3768 0.8484

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1