FatihC's picture
update model card README.md
8ef239d
|
raw
history blame
4.24 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: images
          split: train
          args: images
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.953125

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1379
  • Accuracy: 0.9531

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 0.4862 0.8516
No log 2.0 8 0.4103 0.8828
0.4518 3.0 12 0.3210 0.8984
0.4518 4.0 16 0.2053 0.9375
0.2909 5.0 20 0.1675 0.9453
0.2909 6.0 24 0.1439 0.9531
0.2909 7.0 28 0.1448 0.9297
0.1492 8.0 32 0.1798 0.9531
0.1492 9.0 36 0.1360 0.9453
0.1161 10.0 40 0.1670 0.9531
0.1161 11.0 44 0.1637 0.9531
0.1161 12.0 48 0.1298 0.9531
0.1053 13.0 52 0.1162 0.9531
0.1053 14.0 56 0.1353 0.9531
0.0839 15.0 60 0.1211 0.9609
0.0839 16.0 64 0.1113 0.9609
0.0839 17.0 68 0.1145 0.9609
0.0689 18.0 72 0.1239 0.9531
0.0689 19.0 76 0.1280 0.9531
0.0581 20.0 80 0.1533 0.9531
0.0581 21.0 84 0.1323 0.9609
0.0581 22.0 88 0.1327 0.9531
0.0545 23.0 92 0.1529 0.9531
0.0545 24.0 96 0.1357 0.9531
0.046 25.0 100 0.1333 0.9531
0.046 26.0 104 0.1466 0.9531
0.046 27.0 108 0.1300 0.9531
0.0421 28.0 112 0.1077 0.9609
0.0421 29.0 116 0.0985 0.9609
0.0371 30.0 120 0.1186 0.9531
0.0371 31.0 124 0.1123 0.9531
0.0371 32.0 128 0.1144 0.9531
0.0348 33.0 132 0.1276 0.9531
0.0348 34.0 136 0.1488 0.9531
0.0211 35.0 140 0.1560 0.9531
0.0211 36.0 144 0.1477 0.9531
0.0211 37.0 148 0.1488 0.9531
0.0274 38.0 152 0.1467 0.9531
0.0274 39.0 156 0.1401 0.9531
0.0259 40.0 160 0.1379 0.9531

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3