Text Generation
Transformers
PyTorch
Safetensors
gpt2
stable-diffusion
prompt-generator
distilgpt2
text-generation-inference
Inference Endpoints
FredZhang7's picture
Update README.md
1477bd2
|
raw
history blame
2.2 kB
metadata
license: creativeml-openrail-m
tags:
  - stable-diffusion
  - prompt-generator
  - distilgpt2
datasets:
  - FredZhang7/krea-ai-prompts
  - Gustavosta/Stable-Diffusion-Prompts
  - bartman081523/stable-diffusion-discord-prompts
widget:
  - text: amazing
  - text: a photo of
  - text: a sci-fi
  - text: a portrait of
  - text: a person standing
  - text: a boy watching

DistilGPT2 Stable Diffusion Model Card

Version 2 is here!

DistilGPT2 Stable Diffusion is a text generation model used to generate creative and coherent prompts for text-to-image models, given any text. This model was finetuned on 2.03 million descriptive stable diffusion prompts from Stable Diffusion discord, Lexica.art, and (my hand-picked) Krea.ai. I filtered the hand-picked prompts based on the output results from Stable Diffusion v1.4.

Compared to other prompt generation models using GPT2, this one runs with 50% faster forwardpropagation and 40% less disk space & RAM.

PyTorch

pip install --upgrade transformers
from transformers import GPT2Tokenizer, GPT2LMHeadModel

# load the pretrained tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
tokenizer.max_len = 512

# load the fine-tuned model
model = GPT2LMHeadModel.from_pretrained('FredZhang7/distilgpt2-stable-diffusion')

# generate text using fine-tuned model
from transformers import pipeline
nlp = pipeline('text-generation', model=model, tokenizer=tokenizer)
ins = "a beautiful city"

# generate 10 samples
outs = nlp(ins, max_length=80, num_return_sequences=10)

# print the 10 samples
for i in range(len(outs)):
    outs[i] = str(outs[i]['generated_text']).replace('  ', '')
print('\033[96m' + ins + '\033[0m')
print('\033[93m' + '\n\n'.join(outs) + '\033[0m')

Example Output: Example Output