metadata
license: llama3.1
library_name: transformers
tags:
- not-for-all-audiences
model-index:
- name: Llama-3.1-Jamet-8B-MK.I
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 73.38
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.5
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 12.54
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.24
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.14
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.58
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
Test model, the base is llama 3.1 instruct abliterated. Context limit unknown
System:
### Roleplay Instructions
- Be {{char}}, naturally and consistently
- React realistically to {{user}}, never control their actions
- Stay in character at all times
or something similar, just make sure to add: ### Roleplay Instructions
this model is uncensored, maybe too much... in RP scenario (for me)
dataset:
- C2logs that I cleaned a long time ago
- Freedom RP, but it seems it’s already removed from HF
- Stories from Reddit
- Gemma data from: argilla-warehouse/magpie-ultra-v1.0-gemma, just a small subset
- Reflection data, from here: PJMixers-Dev/Weyaxi_HelpSteer-filtered-Reflection-Gemini-1.5-Flash-ShareGPT. It’s generated by Gemini, and I was like, “Oh, I can make a Google-themed model with this and Gemma data.”
- Toxic data: NobodyExistsOnTheInternet/ToxicQAFinal to make it toxic
- And lastly, just my dump—RP, general, etc., with some of it also generated by Gemini.
so yeah, most of the data is from Google, and only the RP data is from Claude.
you can expect some differences in terms of style (a lot of markdown), but don’t expect this model to be as smart as the instruct
Feedback is greatly appreciated for future improvements (hopefully)
Technical Details:
Base model
v
finetuned the lm_head, embed_tokens and first layer (0)
v
finetune it again, layer 1-2
v
again, but this time using Lora, 64 rank
v
then merge the lora
---
the abliterated instruct
v
same, finetuned the lm_head, embed_tokens and first layer (0)
v
still the same, finetune it again, layer 1-2
v
finetune middle layers
v
merged the previous Lora with this finetuned abliterated model
---
finnaly, merge the two model using ties
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 25.40 |
IFEval (0-Shot) | 73.38 |
BBH (3-Shot) | 29.50 |
MATH Lvl 5 (4-Shot) | 12.54 |
GPQA (0-shot) | 3.24 |
MuSR (0-shot) | 6.14 |
MMLU-PRO (5-shot) | 27.58 |