leaderboard-pr-bot's picture
Adding Evaluation Results
82e84ea verified
|
raw
history blame
5.22 kB
metadata
license: llama3.1
library_name: transformers
tags:
  - not-for-all-audiences
model-index:
  - name: Llama-3.1-Jamet-8B-MK.I
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 73.38
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 29.5
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 12.54
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 3.24
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 6.14
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 27.58
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
          name: Open LLM Leaderboard

Test model, the base is llama 3.1 instruct abliterated. Context limit unknown

System:

### Roleplay Instructions

- Be {{char}}, naturally and consistently
- React realistically to {{user}}, never control their actions
- Stay in character at all times

or something similar, just make sure to add: ### Roleplay Instructions

this model is uncensored, maybe too much... in RP scenario (for me)

dataset:

so yeah, most of the data is from Google, and only the RP data is from Claude.

you can expect some differences in terms of style (a lot of markdown), but don’t expect this model to be as smart as the instruct

Feedback is greatly appreciated for future improvements (hopefully)

Technical Details:

Base model
v
finetuned the lm_head, embed_tokens and first layer (0)
v
finetune it again, layer 1-2
v
again, but this time using Lora, 64 rank
v
then merge the lora
---
the abliterated instruct
v
same, finetuned the lm_head, embed_tokens and first layer (0)
v
still the same, finetune it again, layer 1-2
v
finetune middle layers
v
merged the previous Lora with this finetuned abliterated model
---
finnaly, merge the two model using ties

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 25.40
IFEval (0-Shot) 73.38
BBH (3-Shot) 29.50
MATH Lvl 5 (4-Shot) 12.54
GPQA (0-shot) 3.24
MuSR (0-shot) 6.14
MMLU-PRO (5-shot) 27.58