|
Create README.md |
|
## ByT5 Small Portuguese Product Reviews |
|
|
|
#### Model Description |
|
This is a finetuned version from ByT5 by Google for Sentimental Analysis from Product Reviews in Portuguese. |
|
|
|
#### Training data |
|
It was trained from products reviews from a Americanas.com. You can found the data here: https://github.com/b2wdigital/b2w-reviews01. |
|
|
|
#### Training Procedure |
|
It was finetuned using the Trainer Class available on the Hugging Face library. For evaluation it was used accuracy, precision, recall and f1 score. |
|
|
|
##### Learning Rate: **2e-4** |
|
##### Epochs: **1** |
|
##### Colab for Finetuning: https://colab.research.google.com/drive/1EChTeQkGeXi_52lClBNazHVuSNKEHN2f |
|
##### Colab for Metrics: https://colab.research.google.com/drive/1o4tcsP3lpr1TobtE3Txhp9fllxPWXxlw#scrollTo=PXAoog5vQaTn |
|
#### Score: |
|
```python |
|
Training Set: |
|
'accuracy': 0.8699743370402053, |
|
'f1': 0.9072110777980404, |
|
'precision': 0.9432919284600922, |
|
'recall': 0.8737887200250071 |
|
|
|
Test Set: |
|
'accuracy': 0.8680854858365782, |
|
'f1': 0.9058389204786557, |
|
'precision': 0.9420980625799903, |
|
'recall': 0.8722673967229191 |
|
|
|
Validation Set: |
|
'accuracy': 0.8662624220987031, |
|
'f1': 0.9042450554751569, |
|
'precision': 0.9436194311603322, |
|
'recall': 0.8680250057883769 |
|
``` |
|
|
|
#### Goals |
|
|
|
My true intention was totally educational, thus making available a this version of the model as a example for future proposes. |
|
|
|
How to use |
|
``` python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
import torch |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
else: |
|
device = torch.device('cpu') |
|
print(device) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews") |
|
model.to(device) |
|
|
|
def classificar_review(review): |
|
inputs = tokenizer([review], padding='max_length', truncation=True, max_length=512, return_tensors='pt') |
|
input_ids = inputs.input_ids.to(device) |
|
attention_mask = inputs.attention_mask.to(device) |
|
output = model.generate(input_ids, attention_mask=attention_mask) |
|
pred = np.argmax(output.cpu(), axis=1) |
|
dici = {0: 'Review Negativo', 1: 'Review Positivo'} |
|
return dici[pred.item()] |
|
|
|
classificar_review(review) |
|
``` |