gemma-2-9b-finetune / README.md
Himalayan-wildcat's picture
Update README.md
497c689 verified
---
library_name: transformers
license: mit
language:
- ja
base_model:
- google/gemma-2-9b
datasets:
- DeL-TaiseiOzaki/Tengentoppa-sft-v1.0
---
## Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** Hiroaki Hara(@Himalayan-wildcat)
- **Language(s) (NLP):** ja
- **License:** MIT
- **Finetuned from model:** Himalayan-wildcat/gemma-2-9b-finetune
- **Datasets:** DeL-TaiseiOzaki/Tengentoppa-sft-v1.0
## Uses
```
pip install peft~=0.14 tqdm~=4.67 transformers~=4.47
```
```Python
import json
import re
import torch
from peft import PeftModel
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
model_id = "Himalayan-wildcat/gemma-2-9b-finetune"
hf_token = "/YOUR_HUGGING_FACE_TOKEN/"
test_jsonl_data = "elyza-tasks-100-TV_0.jsonl"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
token = hf_token)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True,
token=hf_token)
datasets = []
with open(test_jsonl_data) as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
results = []
for data in tqdm(datasets):
input_: str = data["input"]
prompt = f"""
[要仢]
- δΈŽγˆγ‚‰γ‚ŒγŸθ³ͺε•γ¨εŒγ˜θ¨€θͺžγ§ε›žη­”をしてください。
- ε›žη­”γŒεˆ†γ‹γ‚‰γͺγ„ε ΄εˆγ―γ€θ™šε½γ‚’γ›γšγ€γ€Œεˆ†γ‹γ‚ŠγΎγ›γ‚“γ€‚γ€γ¨ε›žη­”γ‚’γ—γ¦γγ γ•γ„γ€‚
[θ³ͺ問]
{input_}
[ε›žη­”]"""
tokenized_input = tokenizer(prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
generated_ids = model.generate(
tokenized_input.input_ids,
attention_mask=tokenized_input.attention_mask,
max_new_tokens=500,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_input.input_ids, generated_ids)
]
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
results.append({"task_id": data["task_id"], "input": input_, "output": output})
jsonl_id = re.sub(".*/", "", model_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
```