|
--- |
|
library_name: transformers |
|
license: mit |
|
language: |
|
- ja |
|
base_model: |
|
- google/gemma-2-9b |
|
datasets: |
|
- DeL-TaiseiOzaki/Tengentoppa-sft-v1.0 |
|
--- |
|
|
|
## Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated. |
|
|
|
- **Developed by:** Hiroaki Hara(@Himalayan-wildcat) |
|
- **Language(s) (NLP):** ja |
|
- **License:** MIT |
|
- **Finetuned from model:** Himalayan-wildcat/gemma-2-9b-finetune |
|
- **Datasets:** DeL-TaiseiOzaki/Tengentoppa-sft-v1.0 |
|
|
|
## Uses |
|
|
|
``` |
|
pip install peft~=0.14 tqdm~=4.67 transformers~=4.47 |
|
``` |
|
|
|
```Python |
|
import json |
|
import re |
|
|
|
import torch |
|
from peft import PeftModel |
|
from tqdm import tqdm |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
) |
|
|
|
|
|
model_id = "Himalayan-wildcat/gemma-2-9b-finetune" |
|
hf_token = "/YOUR_HUGGING_FACE_TOKEN/" |
|
test_jsonl_data = "elyza-tasks-100-TV_0.jsonl" |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
token = hf_token) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_id, |
|
trust_remote_code=True, |
|
token=hf_token) |
|
|
|
datasets = [] |
|
with open(test_jsonl_data) as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
results = [] |
|
for data in tqdm(datasets): |
|
input_: str = data["input"] |
|
|
|
prompt = f""" |
|
[θ¦δ»Ά] |
|
- δΈγγγγθ³ͺεγ¨εγθ¨θͺγ§εηγγγ¦γγ γγγ |
|
- εηγεγγγͺγε ΄εγ―γθε½γγγγγεγγγΎγγγγγ¨εηγγγ¦γγ γγγ |
|
|
|
[θ³ͺε] |
|
{input_} |
|
|
|
[εη]""" |
|
|
|
tokenized_input = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate( |
|
tokenized_input.input_ids, |
|
attention_mask=tokenized_input.attention_mask, |
|
max_new_tokens=500, |
|
do_sample=False, |
|
repetition_penalty=1.2, |
|
pad_token_id=tokenizer.eos_token_id) |
|
|
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_input.input_ids, generated_ids) |
|
] |
|
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
results.append({"task_id": data["task_id"], "input": input_, "output": output}) |
|
|
|
jsonl_id = re.sub(".*/", "", model_id) |
|
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
``` |