metadata
license: mit
base_model: openai-community/gpt2-large
tags:
- trl
- reward-trainer
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: >-
RM-HH-AllMixNonPeft_harmless_gpt3_20000_gpt2-large_shuffleFalse_extractchosenFalse
results: []
RM-HH-AllMixNonPeft_harmless_gpt3_20000_gpt2-large_shuffleFalse_extractchosenFalse
This model is a fine-tuned version of openai-community/gpt2-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0114
- Accuracy: 0.9958
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5568 | 0.17 | 250 | 0.0365 | 0.9808 |
0.5117 | 0.34 | 500 | 0.0154 | 0.9935 |
0.483 | 0.51 | 750 | 0.0184 | 0.995 |
0.4771 | 0.68 | 1000 | 0.0139 | 0.9954 |
0.469 | 0.85 | 1250 | 0.0114 | 0.9958 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2