metadata
library_name: transformers
license: apache-2.0
base_model: sshleifer/distilbart-cnn-12-6
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: dataset_summarize
results: []
dataset_summarize
This model is a fine-tuned version of sshleifer/distilbart-cnn-12-6 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.3402
- Rouge1: 0.2705
- Rouge2: 0.0363
- Rougel: 0.1609
- Rougelsum: 0.1609
- Generated Length: 113.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 1 | 5.0242 | 0.2692 | 0.0362 | 0.1676 | 0.1676 | 83.5 |
No log | 2.0 | 2 | 4.5236 | 0.2629 | 0.0251 | 0.1431 | 0.1431 | 96.5 |
No log | 3.0 | 3 | 4.3402 | 0.2705 | 0.0363 | 0.1609 | 0.1609 | 113.0 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1