EXL2 quantisation of NeuralHermes-2.5-Mistral-7B, for use with ExLLamaV2.
Original model by @mlabonne.
Model size: 4.6GB (3x reduction), 5 bits-per-weight average, 6bpw on head.
Calibration Data: Wikitext (parquet)
Command: python convert.py -i convert/NeuralHermes-2.5-Mistral-7B -c convert/0000.parquet -o convert/temp2 -cf convert/nh-5bpw -b 5.0 -hb 6
Layer measurements are provided in `measurement.json`` for further quantisation.
NeuralHermes 2.5 - Mistral 7B
NeuralHermes is an OpenHermes-2.5-Mistral-7B model that has been further fine-tuned with Direct Preference Optimization (DPO) using the mlabonne/chatml_dpo_pairs dataset.
It is directly inspired by the RLHF process described by neural-chat-7b-v3-1's authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. I haven't performed a comprehensive evaluation of the model, but it works great, nothing broken apparently! :)
The code to train this model is available on Google Colab and GitHub. It required an A100 GPU for about an hour.
GGUF versions of this model are available here: mlabonne/NeuralHermes-2.5-Mistral-7B-GGUF.
Usage
You can run this model using LM Studio or any other frontend.
You can also run this model using the following code:
import transformers
from transformers import AutoTokenizer
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model=new_model,
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
Training hyperparameters
LoRA:
- r=16,
- lora_alpha=16,
- lora_dropout=0.05,
- bias="none",
- task_type="CAUSAL_LM",
- target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
Training arguments:
- per_device_train_batch_size=4,
- gradient_accumulation_steps=4,
- gradient_checkpointing=True,
- learning_rate=5e-5,
- lr_scheduler_type="cosine",
- max_steps=200,
- optim="paged_adamw_32bit",
- warmup_steps=100,
DPOTrainer:
- beta=0.1,
- max_prompt_length=1024,
- max_length=1536,
- Downloads last month
- 7
Model tree for IconicAI/NeuralHermes-2.5-Mistral-7B-exl2-5bpw
Base model
mistralai/Mistral-7B-v0.1