librarian-bot's picture
Librarian Bot: Add base_model information to model
8449fae
|
raw
history blame
2.17 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
  - f1
base_model: bert-base-uncased
model-index:
  - name: >-
      bert-base-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr-0.1-weight_decay
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - type: accuracy
            value: 0.941
            name: Accuracy
          - type: f1
            value: 0.9411169346964399
            name: F1

bert-base-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr-0.1-weight_decay

This model is a fine-tuned version of bert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2591
  • Accuracy: 0.941
  • F1: 0.9411

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.0799 1.0 250 0.1898 0.9375 0.9377
0.0516 2.0 500 0.2290 0.938 0.9383
0.0386 3.0 750 0.2107 0.9415 0.9419
0.0195 4.0 1000 0.2607 0.9435 0.9433
0.0149 5.0 1250 0.2591 0.941 0.9411

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3