L_Roberta3 / README.md
James-kc-min's picture
update model card README.md
c91574e
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: L_Roberta3
    results: []

L_Roberta3

This model is a fine-tuned version of distilroberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2095

  • Accuracy: 0.9555

  • F1: 0.9555

  • Precision: 0.9555

  • Recall: 0.9555

  • C Report: precision recall f1-score support

         0       0.97      0.95      0.96       876
         1       0.94      0.97      0.95       696
    

    accuracy 0.96 1572 macro avg 0.95 0.96 0.96 1572

weighted avg 0.96 0.96 0.96 1572

  • C Matrix: None

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall C Report C Matrix
0.2674 1.0 329 0.2436 0.9389 0.9389 0.9389 0.9389 precision recall f1-score support
       0       0.94      0.95      0.95       876
       1       0.94      0.92      0.93       696

accuracy                           0.94      1572

macro avg 0.94 0.94 0.94 1572 weighted avg 0.94 0.94 0.94 1572 | None | | 0.1377 | 2.0 | 658 | 0.1506 | 0.9408 | 0.9408 | 0.9408 | 0.9408 | precision recall f1-score support

       0       0.97      0.92      0.95       876
       1       0.91      0.96      0.94       696

accuracy                           0.94      1572

macro avg 0.94 0.94 0.94 1572 weighted avg 0.94 0.94 0.94 1572 | None | | 0.0898 | 3.0 | 987 | 0.1491 | 0.9548 | 0.9548 | 0.9548 | 0.9548 | precision recall f1-score support

       0       0.96      0.96      0.96       876
       1       0.95      0.95      0.95       696

accuracy                           0.95      1572

macro avg 0.95 0.95 0.95 1572 weighted avg 0.95 0.95 0.95 1572 | None | | 0.0543 | 4.0 | 1316 | 0.1831 | 0.9561 | 0.9561 | 0.9561 | 0.9561 | precision recall f1-score support

       0       0.97      0.95      0.96       876
       1       0.94      0.96      0.95       696

accuracy                           0.96      1572

macro avg 0.95 0.96 0.96 1572 weighted avg 0.96 0.96 0.96 1572 | None | | 0.0394 | 5.0 | 1645 | 0.2095 | 0.9555 | 0.9555 | 0.9555 | 0.9555 | precision recall f1-score support

       0       0.97      0.95      0.96       876
       1       0.94      0.97      0.95       696

accuracy                           0.96      1572

macro avg 0.95 0.96 0.96 1572 weighted avg 0.96 0.96 0.96 1572 | None |

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.2+cu102
  • Datasets 2.2.2
  • Tokenizers 0.12.1