|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: L_Roberta3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# L_Roberta3 |
|
|
|
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2095 |
|
- Accuracy: 0.9555 |
|
- F1: 0.9555 |
|
- Precision: 0.9555 |
|
- Recall: 0.9555 |
|
- C Report: precision recall f1-score support |
|
|
|
0 0.97 0.95 0.96 876 |
|
1 0.94 0.97 0.95 696 |
|
|
|
accuracy 0.96 1572 |
|
macro avg 0.95 0.96 0.96 1572 |
|
weighted avg 0.96 0.96 0.96 1572 |
|
|
|
- C Matrix: None |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | C Report | C Matrix | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:| |
|
| 0.2674 | 1.0 | 329 | 0.2436 | 0.9389 | 0.9389 | 0.9389 | 0.9389 | precision recall f1-score support |
|
|
|
0 0.94 0.95 0.95 876 |
|
1 0.94 0.92 0.93 696 |
|
|
|
accuracy 0.94 1572 |
|
macro avg 0.94 0.94 0.94 1572 |
|
weighted avg 0.94 0.94 0.94 1572 |
|
| None | |
|
| 0.1377 | 2.0 | 658 | 0.1506 | 0.9408 | 0.9408 | 0.9408 | 0.9408 | precision recall f1-score support |
|
|
|
0 0.97 0.92 0.95 876 |
|
1 0.91 0.96 0.94 696 |
|
|
|
accuracy 0.94 1572 |
|
macro avg 0.94 0.94 0.94 1572 |
|
weighted avg 0.94 0.94 0.94 1572 |
|
| None | |
|
| 0.0898 | 3.0 | 987 | 0.1491 | 0.9548 | 0.9548 | 0.9548 | 0.9548 | precision recall f1-score support |
|
|
|
0 0.96 0.96 0.96 876 |
|
1 0.95 0.95 0.95 696 |
|
|
|
accuracy 0.95 1572 |
|
macro avg 0.95 0.95 0.95 1572 |
|
weighted avg 0.95 0.95 0.95 1572 |
|
| None | |
|
| 0.0543 | 4.0 | 1316 | 0.1831 | 0.9561 | 0.9561 | 0.9561 | 0.9561 | precision recall f1-score support |
|
|
|
0 0.97 0.95 0.96 876 |
|
1 0.94 0.96 0.95 696 |
|
|
|
accuracy 0.96 1572 |
|
macro avg 0.95 0.96 0.96 1572 |
|
weighted avg 0.96 0.96 0.96 1572 |
|
| None | |
|
| 0.0394 | 5.0 | 1645 | 0.2095 | 0.9555 | 0.9555 | 0.9555 | 0.9555 | precision recall f1-score support |
|
|
|
0 0.97 0.95 0.96 876 |
|
1 0.94 0.97 0.95 696 |
|
|
|
accuracy 0.96 1572 |
|
macro avg 0.95 0.96 0.96 1572 |
|
weighted avg 0.96 0.96 0.96 1572 |
|
| None | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|