Joeythemonster's picture
Update README.md
8d316a9
|
raw
history blame
19.6 kB
metadata
license: creativeml-openrail-m
tags:
  - text-to-image
  - stable-diffusion

ANYTHING-MIDJOURNEY-V-4.1 Dreambooth model trained by Joeythemonster with TheLastBen's fast-DreamBooth notebook

Test the concept via A1111 Colab fast-Colab-A1111 Or you can run your new concept via diffusers Colab Notebook for Inference

Sample pictures of this concept:

import subprocess, time, gc, os, sys

def setup_environment(): start_time = time.time() print_subprocess = False use_xformers_for_colab = True try: ipy = get_ipython() except: ipy = 'could not get_ipython' if 'google.colab' in str(ipy): print("..setting up environment")

    all_process = [
        ['pip', 'install', 'torch==1.12.1+cu113', 'torchvision==0.13.1+cu113', '--extra-index-url', 'https://download.pytorch.org/whl/cu113'],
        ['pip', 'install', 'omegaconf==2.2.3', 'einops==0.4.1', 'pytorch-lightning==1.7.4', 'torchmetrics==0.9.3', 'torchtext==0.13.1', 'transformers==4.21.2', 'safetensors', 'kornia==0.6.7'],
        ['git', 'clone', 'https://github.com/deforum-art/deforum-stable-diffusion'],
        ['pip', 'install', 'accelerate', 'ftfy', 'jsonmerge', 'matplotlib', 'resize-right', 'timm', 'torchdiffeq','scikit-learn','torchsde','open-clip-torch'],
    ]
    for process in all_process:
        running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
        if print_subprocess:
            print(running)
    with open('deforum-stable-diffusion/src/k_diffusion/__init__.py', 'w') as f:
        f.write('')
    sys.path.extend([
        'deforum-stable-diffusion/',
        'deforum-stable-diffusion/src',
    ])
    if use_xformers_for_colab:

        print("..installing xformers")

        all_process = [['pip', 'install', 'triton==2.0.0.dev20220701']]
        for process in all_process:
            running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
            if print_subprocess:
                print(running)

        v_card_name = subprocess.run(['nvidia-smi', '--query-gpu=name', '--format=csv,noheader'], stdout=subprocess.PIPE).stdout.decode('utf-8')
        if 't4' in v_card_name.lower():
            name_to_download = 'T4'
        elif 'v100' in v_card_name.lower():
            name_to_download = 'V100'
        elif 'a100' in v_card_name.lower():
            name_to_download = 'A100'
        elif 'p100' in v_card_name.lower():
            name_to_download = 'P100'
        elif 'a4000' in v_card_name.lower():
            name_to_download = 'Non-Colab/Paperspace/A4000'
        elif 'p5000' in v_card_name.lower():
            name_to_download = 'Non-Colab/Paperspace/P5000'
        elif 'quadro m4000' in v_card_name.lower():
            name_to_download = 'Non-Colab/Paperspace/Quadro M4000'
        elif 'rtx 4000' in v_card_name.lower():
            name_to_download = 'Non-Colab/Paperspace/RTX 4000'
        elif 'rtx 5000' in v_card_name.lower():
            name_to_download = 'Non-Colab/Paperspace/RTX 5000'
        else:
            print(v_card_name + ' is currently not supported with xformers flash attention in deforum!')

        if 'Non-Colab' in name_to_download:
            x_ver = 'xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl'
        else:
            x_ver = 'xformers-0.0.13.dev0-py3-none-any.whl'

        x_link = 'https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/' + name_to_download + '/' + x_ver

        all_process = [
            ['wget', '--no-verbose', '--no-clobber', x_link],
            ['pip', 'install', x_ver],
        ]

        for process in all_process:
            running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
            if print_subprocess:
                print(running)
else:
    sys.path.extend([
        'src'
    ])
end_time = time.time()
print(f"..environment set up in {end_time-start_time:.0f} seconds")
return

setup_environment()

import torch import random import clip from IPython import display from types import SimpleNamespace from helpers.save_images import get_output_folder from helpers.settings import load_args from helpers.render import render_animation, render_input_video, render_image_batch, render_interpolation from helpers.model_load import make_linear_decode, load_model, get_model_output_paths from helpers.aesthetics import load_aesthetics_model

#@markdown Path Setup

def Root(): models_path = "models" #@param {type:"string"} configs_path = "configs" #@param {type:"string"} output_path = "output" #@param {type:"string"} mount_google_drive = True #@param {type:"boolean"} models_path_gdrive = "/content/drive/MyDrive/AI/models" #@param {type:"string"} output_path_gdrive = "/content/drive/MyDrive/AI/StableDiffusion" #@param {type:"string"}

#@markdown **Model Setup**
model_config = "v1-inference.yaml" #@param ["custom","v2-inference.yaml","v1-inference.yaml"]
model_checkpoint =  "v1-5-pruned-emaonly.ckpt" #@param ["custom","512-base-ema.ckpt","v1-5-pruned.ckpt","v1-5-pruned-emaonly.ckpt","sd-v1-4-full-ema.ckpt","sd-v1-4.ckpt","sd-v1-3-full-ema.ckpt","sd-v1-3.ckpt","sd-v1-2-full-ema.ckpt","sd-v1-2.ckpt","sd-v1-1-full-ema.ckpt","sd-v1-1.ckpt", "robo-diffusion-v1.ckpt","wd-v1-3-float16.ckpt"]
custom_config_path = "" #@param {type:"string"}
custom_checkpoint_path = "" #@param {type:"string"}
half_precision = True
return locals()

root = Root() root = SimpleNamespace(**root)

root.models_path, root.output_path = get_model_output_paths(root) root.model, root.device = load_model(root, load_on_run_all=True , check_sha256=True )

                                def DeforumAnimArgs():

#@markdown ####**Animation:**
animation_mode = 'Video Input' #@param ['None', '2D', '3D', 'Video Input', 'Interpolation'] {type:'string'}
max_frames = 400 #@param {type:"number"}
border = 'replicate' #@param ['wrap', 'replicate'] {type:'string'}

#@markdown ####**Motion Parameters:**
angle = "0:(0)"#@param {type:"string"}
zoom = "0:(1.04)"#@param {type:"string"}
translation_x = "0:(10*sin(2*3.14*t/10))"#@param {type:"string"}
translation_y = "0:(0)"#@param {type:"string"}
translation_z = "0:(10)"#@param {type:"string"}
rotation_3d_x = "0:(0)"#@param {type:"string"}
rotation_3d_y = "0:(0)"#@param {type:"string"}
rotation_3d_z = "0:(0)"#@param {type:"string"}
flip_2d_perspective = False #@param {type:"boolean"}
perspective_flip_theta = "0:(0)"#@param {type:"string"}
perspective_flip_phi = "0:(t%15)"#@param {type:"string"}
perspective_flip_gamma = "0:(0)"#@param {type:"string"}
perspective_flip_fv = "0:(53)"#@param {type:"string"}
noise_schedule = "0: (0.02)"#@param {type:"string"}
strength_schedule = "0: (0.65)"#@param {type:"string"}
contrast_schedule = "0: (1.0)"#@param {type:"string"}

#@markdown ####**Coherence:**
color_coherence = 'Match Frame 0 LAB' #@param ['None', 'Match Frame 0 HSV', 'Match Frame 0 LAB', 'Match Frame 0 RGB'] {type:'string'}
diffusion_cadence = '1' #@param ['1','2','3','4','5','6','7','8'] {type:'string'}

#@markdown ####**3D Depth Warping:**
use_depth_warping = True #@param {type:"boolean"}
midas_weight = 0.3#@param {type:"number"}
near_plane = 200
far_plane = 10000
fov = 40#@param {type:"number"}
padding_mode = 'border'#@param ['border', 'reflection', 'zeros'] {type:'string'}
sampling_mode = 'bicubic'#@param ['bicubic', 'bilinear', 'nearest'] {type:'string'}
save_depth_maps = True #@param {type:"boolean"}

#@markdown ####**Video Input:**
video_init_path ='/content/drive/MyDrive/mp4 for deforum/stan.mp4'#@param {type:"string"}
extract_nth_frame = 1#@param {type:"number"}
overwrite_extracted_frames = True #@param {type:"boolean"}
use_mask_video = False #@param {type:"boolean"}
video_mask_path ='/content/drive/MyDrive/mp4 for deforum/stan.mp4'#@param {type:"string"}

#@markdown ####**Interpolation:**
interpolate_key_frames = False #@param {type:"boolean"}
interpolate_x_frames = 4 #@param {type:"number"}

#@markdown ####**Resume Animation:**
resume_from_timestring = False #@param {type:"boolean"}
resume_timestring = "20220829210106" #@param {type:"string"}

return locals()

prompts = [
"a beautiful lake by Asher Brown Durand, trending on Artstation", # the first prompt I want
"a beautiful portrait of a woman by Artgerm, trending on Artstation", # the second prompt I want
#"this prompt I don't want it I commented it out",
#"a nousr robot, trending on Artstation", # use "nousr robot" with the robot diffusion model (see model_checkpoint setting)
#"touhou 1girl komeiji_koishi portrait, green hair", # waifu diffusion prompts can use danbooru tag groups (see model_checkpoint)
#"this prompt has weights if prompt weighting enabled:2 can also do negative:-2", # (see prompt_weighting)

]

animation_prompts = { 0: "a beautiful death, trending on Artstation", 100: "a beautiful rebirth, trending on Artstation", 200: "a beautiful rise to the top, trending on Artstation", 300: "a beautiful world, trending on Artstation", }

#@markdown Load Settings override_settings_with_file = False #@param {type:"boolean"} settings_file = "custom" #@param ["custom", "512x512_aesthetic_0.json","512x512_aesthetic_1.json","512x512_colormatch_0.json","512x512_colormatch_1.json","512x512_colormatch_2.json","512x512_colormatch_3.json"] custom_settings_file = "/content/drive/MyDrive/Settings.txt"#@param {type:"string"}

def DeforumArgs(): #@markdown Image Settings W = 512 #@param H = 512 #@param W, H = map(lambda x: x - x % 64, (W, H)) # resize to integer multiple of 64

#@markdown **Sampling Settings**
seed = -1 #@param
sampler = 'euler_ancestral' #@param ["klms","dpm2","dpm2_ancestral","heun","euler","euler_ancestral","plms", "ddim", "dpm_fast", "dpm_adaptive", "dpmpp_2s_a", "dpmpp_2m"]
steps = 80 #@param
scale = 7 #@param
ddim_eta = 0.0 #@param
dynamic_threshold = None
static_threshold = None   

#@markdown **Save & Display Settings**
save_samples = True #@param {type:"boolean"}
save_settings = True #@param {type:"boolean"}
display_samples = True #@param {type:"boolean"}
save_sample_per_step = False #@param {type:"boolean"}
show_sample_per_step = False #@param {type:"boolean"}

#@markdown **Prompt Settings**
prompt_weighting = True #@param {type:"boolean"}
normalize_prompt_weights = True #@param {type:"boolean"}
log_weighted_subprompts = False #@param {type:"boolean"}

#@markdown **Batch Settings**
n_batch = 1 #@param
batch_name = "STAN" #@param {type:"string"}
filename_format = "{timestring}_{index}_{prompt}.png" #@param ["{timestring}_{index}_{seed}.png","{timestring}_{index}_{prompt}.png"]
seed_behavior = "iter" #@param ["iter","fixed","random"]
make_grid = False #@param {type:"boolean"}
grid_rows = 2 #@param 
outdir = get_output_folder(root.output_path, batch_name)

#@markdown **Init Settings**
use_init = False #@param {type:"boolean"}
strength = 0.0 #@param {type:"number"}
strength_0_no_init = True # Set the strength to 0 automatically when no init image is used
init_image = "https://cdn.pixabay.com/photo/2022/07/30/13/10/green-longhorn-beetle-7353749_1280.jpg" #@param {type:"string"}
# Whiter areas of the mask are areas that change more
use_mask = False #@param {type:"boolean"}
use_alpha_as_mask = False # use the alpha channel of the init image as the mask
mask_file = "https://www.filterforge.com/wiki/images/archive/b/b7/20080927223728%21Polygonal_gradient_thumb.jpg" #@param {type:"string"}
invert_mask = False #@param {type:"boolean"}
# Adjust mask image, 1.0 is no adjustment. Should be positive numbers.
mask_brightness_adjust = 1.0  #@param {type:"number"}
mask_contrast_adjust = 1.0  #@param {type:"number"}
# Overlay the masked image at the end of the generation so it does not get degraded by encoding and decoding
overlay_mask = True  # {type:"boolean"}
# Blur edges of final overlay mask, if used. Minimum = 0 (no blur)
mask_overlay_blur = 5 # {type:"number"}

#@markdown **Exposure/Contrast Conditional Settings**
mean_scale = 0 #@param {type:"number"}
var_scale = 0 #@param {type:"number"}
exposure_scale = 0 #@param {type:"number"}
exposure_target = 0.5 #@param {type:"number"}

#@markdown **Color Match Conditional Settings**
colormatch_scale = 0 #@param {type:"number"}
colormatch_image = "https://www.saasdesign.io/wp-content/uploads/2021/02/palette-3-min-980x588.png" #@param {type:"string"}
colormatch_n_colors = 4 #@param {type:"number"}
ignore_sat_weight = 0 #@param {type:"number"}

#@markdown **CLIP\Aesthetics Conditional Settings**
clip_name = 'ViT-L/14' #@param ['ViT-L/14', 'ViT-L/14@336px', 'ViT-B/16', 'ViT-B/32']
clip_scale = 0 #@param {type:"number"}
aesthetics_scale = 0 #@param {type:"number"}
cutn = 1 #@param {type:"number"}
cut_pow = 0.0001 #@param {type:"number"}

#@markdown **Other Conditional Settings**
init_mse_scale = 0 #@param {type:"number"}
init_mse_image = "https://cdn.pixabay.com/photo/2022/07/30/13/10/green-longhorn-beetle-7353749_1280.jpg" #@param {type:"string"}

blue_scale = 0 #@param {type:"number"}

#@markdown **Conditional Gradient Settings**
gradient_wrt = 'x0_pred' #@param ["x", "x0_pred"]
gradient_add_to = 'both' #@param ["cond", "uncond", "both"]
decode_method = 'linear' #@param ["autoencoder","linear"]
grad_threshold_type = 'dynamic' #@param ["dynamic", "static", "mean", "schedule"]
clamp_grad_threshold = 0.2 #@param {type:"number"}
clamp_start = 0.2 #@param
clamp_stop = 0.01 #@param
grad_inject_timing = list(range(1,10)) #@param

#@markdown **Speed vs VRAM Settings**
cond_uncond_sync = True #@param {type:"boolean"}

n_samples = 1 # doesnt do anything
precision = 'autocast' 
C = 4
f = 8

prompt = ""
timestring = ""
init_latent = None
init_sample = None
init_sample_raw = None
mask_sample = None
init_c = None

return locals()

args_dict = DeforumArgs() anim_args_dict = DeforumAnimArgs()

if override_settings_with_file: load_args(args_dict, anim_args_dict, settings_file, custom_settings_file, verbose=False)

args = SimpleNamespace(**args_dict) anim_args = SimpleNamespace(**anim_args_dict)

args.timestring = time.strftime('%Y%m%d%H%M%S') args.strength = max(0.0, min(1.0, args.strength))

Load clip model if using clip guidance

if (args.clip_scale > 0) or (args.aesthetics_scale > 0): root.clip_model = clip.load(args.clip_name, jit=False)[0].eval().requires_grad_(False).to(root.device) if (args.aesthetics_scale > 0): root.aesthetics_model = load_aesthetics_model(args, root)

if args.seed == -1: args.seed = random.randint(0, 2**32 - 1) if not args.use_init: args.init_image = None if args.sampler == 'plms' and (args.use_init or anim_args.animation_mode != 'None'): print(f"Init images aren't supported with PLMS yet, switching to KLMS") args.sampler = 'klms' if args.sampler != 'ddim': args.ddim_eta = 0

if anim_args.animation_mode == 'None': anim_args.max_frames = 1 elif anim_args.animation_mode == 'Video Input': args.use_init = True

clean up unused memory

gc.collect() torch.cuda.empty_cache()

dispatch to appropriate renderer

if anim_args.animation_mode == '2D' or anim_args.animation_mode == '3D': render_animation(args, anim_args, animation_prompts, root) elif anim_args.animation_mode == 'Video Input': render_input_video(args, anim_args, animation_prompts, root) elif anim_args.animation_mode == 'Interpolation': render_interpolation(args, anim_args, animation_prompts, root) else: render_image_batch(args, prompts, root)

skip_video_for_run_all = False #@param {type: 'boolean'} fps = 12 #@param {type:"number"} #@markdown Manual Settings use_manual_settings = False #@param {type:"boolean"} image_path = "/content/drive/MyDrive/AI/StableDiffusion/2022-09/20220903000939_%05d.png" #@param {type:"string"} mp4_path = "/content/drive/MyDrive/AI/StableDiffusion/2022-09/20220903000939.mp4" #@param {type:"string"} render_steps = False #@param {type: 'boolean'} path_name_modifier = "x0_pred" #@param ["x0_pred","x"] make_gif = False

if skip_video_for_run_all == True: print('Skipping video creation, uncheck skip_video_for_run_all if you want to run it') else: import os import subprocess from base64 import b64encode

print(f"{image_path} -> {mp4_path}")

if use_manual_settings:
    max_frames = "200" #@param {type:"string"}
else:
    if render_steps: # render steps from a single image
        fname = f"{path_name_modifier}_%05d.png"
        all_step_dirs = [os.path.join(args.outdir, d) for d in os.listdir(args.outdir) if os.path.isdir(os.path.join(args.outdir,d))]
        newest_dir = max(all_step_dirs, key=os.path.getmtime)
        image_path = os.path.join(newest_dir, fname)
        print(f"Reading images from {image_path}")
        mp4_path = os.path.join(newest_dir, f"{args.timestring}_{path_name_modifier}.mp4")
        max_frames = str(args.steps)
    else: # render images for a video
        image_path = os.path.join(args.outdir, f"{args.timestring}_%05d.png")
        mp4_path = os.path.join(args.outdir, f"{args.timestring}.mp4")
        max_frames = str(anim_args.max_frames)

# make video
cmd = [
    'ffmpeg',
    '-y',
    '-vcodec', 'png',
    '-r', str(fps),
    '-start_number', str(0),
    '-i', image_path,
    '-frames:v', max_frames,
    '-c:v', 'libx264',
    '-vf',
    f'fps={fps}',
    '-pix_fmt', 'yuv420p',
    '-crf', '17',
    '-preset', 'veryfast',
    '-pattern_type', 'sequence',
    mp4_path
]
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
if process.returncode != 0:
    print(stderr)
    raise RuntimeError(stderr)

mp4 = open(mp4_path,'rb').read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
display.display(display.HTML(f'<video controls loop><source src="{data_url}" type="video/mp4"></video>') )

if make_gif:
     gif_path = os.path.splitext(mp4_path)[0]+'.gif'
     cmd_gif = [
         'ffmpeg',
         '-y',
         '-i', mp4_path,
         '-r', str(fps),
         gif_path
     ]
     process_gif = subprocess.Popen(cmd_gif, stdout=subprocess.PIPE, stderr=subprocess.PIPE)