|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import math
|
|
from torch_geometric.nn import GCNConv
|
|
|
|
class TransNAR(nn.Module):
|
|
def __init__(self, input_dim, output_dim, embed_dim, num_heads, num_layers, ffn_dim, dropout=0.1):
|
|
super(TransNAR, self).__init__()
|
|
|
|
|
|
self.embedding = nn.Linear(input_dim, embed_dim)
|
|
self.pos_encoding = PositionalEncoding(embed_dim, dropout)
|
|
|
|
|
|
self.transformer_layers = nn.ModuleList([
|
|
TransformerLayer(embed_dim, num_heads, ffn_dim, dropout)
|
|
for _ in range(num_layers)
|
|
])
|
|
|
|
|
|
self.nar = NAR(embed_dim)
|
|
|
|
|
|
self.cross_attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
|
|
|
|
|
|
self.decoder = nn.Linear(embed_dim, output_dim)
|
|
|
|
|
|
self.final_norm = nn.LayerNorm(output_dim)
|
|
|
|
def forward(self, x, edge_index, edge_attr):
|
|
|
|
x = self.embedding(x)
|
|
x = self.pos_encoding(x)
|
|
|
|
|
|
for layer in self.transformer_layers:
|
|
x = layer(x)
|
|
|
|
|
|
nar_output = self.nar(x, edge_index, edge_attr)
|
|
|
|
|
|
cross_attn_output, _ = self.cross_attention(x, nar_output, nar_output)
|
|
|
|
|
|
output = self.decoder(cross_attn_output)
|
|
|
|
|
|
output = self.final_norm(output)
|
|
|
|
return output
|
|
|
|
class TransformerLayer(nn.Module):
|
|
def __init__(self, embed_dim, num_heads, ffn_dim, dropout=0.1):
|
|
super(TransformerLayer, self).__init__()
|
|
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
|
|
self.ffn = nn.Sequential(
|
|
nn.Linear(embed_dim, ffn_dim),
|
|
nn.ReLU(),
|
|
nn.Linear(ffn_dim, embed_dim)
|
|
)
|
|
self.norm1 = nn.LayerNorm(embed_dim)
|
|
self.norm2 = nn.LayerNorm(embed_dim)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x):
|
|
|
|
attn_output, _ = self.self_attn(x, x, x)
|
|
x = x + self.dropout(attn_output)
|
|
x = self.norm1(x)
|
|
|
|
|
|
ffn_output = self.ffn(x)
|
|
x = x + self.dropout(ffn_output)
|
|
x = self.norm2(x)
|
|
|
|
return x
|
|
|
|
class NAR(nn.Module):
|
|
def __init__(self, embed_dim):
|
|
super(NAR, self).__init__()
|
|
self.gcn1 = GCNConv(embed_dim, embed_dim * 2)
|
|
self.gcn2 = GCNConv(embed_dim * 2, embed_dim)
|
|
self.gru = nn.GRU(embed_dim, embed_dim, batch_first=True)
|
|
|
|
def forward(self, x, edge_index, edge_attr):
|
|
x = F.relu(self.gcn1(x, edge_index))
|
|
x = self.gcn2(x, edge_index)
|
|
output, _ = self.gru(x.unsqueeze(1))
|
|
return output.squeeze(1)
|
|
|
|
class PositionalEncoding(nn.Module):
|
|
def __init__(self, embed_dim, dropout=0.1, max_len=5000):
|
|
super(PositionalEncoding, self).__init__()
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
|
|
|
|
pe = torch.zeros(max_len, embed_dim)
|
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
|
div_term = torch.exp(torch.arange(0, embed_dim, 2).float() * (-math.log(10000.0) / embed_dim))
|
|
pe[:, 0::2] = torch.sin(position * div_term)
|
|
pe[:, 1::2] = torch.cos(position * div_term)
|
|
pe = pe.unsqueeze(0).transpose(0, 1)
|
|
self.register_buffer('pe', pe)
|
|
|
|
def forward(self, x):
|
|
x = x + self.pe[:x.size(0), :].to(x.device)
|
|
return self.dropout(x)
|
|
|
|
|
|
input_dim = 100
|
|
output_dim = 50
|
|
embed_dim = 256
|
|
num_heads = 8
|
|
num_layers = 6
|
|
ffn_dim = 1024
|
|
|
|
model = TransNAR(input_dim, output_dim, embed_dim, num_heads, num_layers, ffn_dim)
|
|
input_data = torch.randn(32, 100, input_dim)
|
|
edge_index = torch.tensor([[0, 1], [1, 0]])
|
|
edge_attr = torch.randn(edge_index.size(1))
|
|
output = model(input_data, edge_index, edge_attr)
|
|
print(output.shape)
|
|
|