Scientific_data_summarisation_model

This model is a fine-tuned version of sambydlo/bart-large-scientific-lay-summarisation on the scientific_lay_summarisation dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0270
  • Rouge1: 0.1355
  • Rouge2: 0.0486
  • Rougel: 0.1082
  • Rougelsum: 0.1082
  • Gen Len: 21.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.1526 1.0 1549 2.0667 0.1336 0.0483 0.1075 0.1075 21.0
2.0567 2.0 3098 2.0417 0.136 0.0486 0.1082 0.1082 21.0
1.975 3.0 4647 2.0308 0.1352 0.0488 0.1083 0.1082 21.0
1.9154 4.0 6196 2.0268 0.1356 0.048 0.1079 0.1078 21.0
1.8691 5.0 7745 2.0270 0.1355 0.0486 0.1082 0.1082 21.0

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
14
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Kankanaghosh/Scientific_data_summarisation_model

Finetuned
(1)
this model

Evaluation results