Scientific_data_summarisation_model
This model is a fine-tuned version of sambydlo/bart-large-scientific-lay-summarisation on the scientific_lay_summarisation dataset. It achieves the following results on the evaluation set:
- Loss: 2.0270
- Rouge1: 0.1355
- Rouge2: 0.0486
- Rougel: 0.1082
- Rougelsum: 0.1082
- Gen Len: 21.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.1526 | 1.0 | 1549 | 2.0667 | 0.1336 | 0.0483 | 0.1075 | 0.1075 | 21.0 |
2.0567 | 2.0 | 3098 | 2.0417 | 0.136 | 0.0486 | 0.1082 | 0.1082 | 21.0 |
1.975 | 3.0 | 4647 | 2.0308 | 0.1352 | 0.0488 | 0.1083 | 0.1082 | 21.0 |
1.9154 | 4.0 | 6196 | 2.0268 | 0.1356 | 0.048 | 0.1079 | 0.1078 | 21.0 |
1.8691 | 5.0 | 7745 | 2.0270 | 0.1355 | 0.0486 | 0.1082 | 0.1082 | 21.0 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 14
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Kankanaghosh/Scientific_data_summarisation_model
Evaluation results
- Rouge1 on scientific_lay_summarisationvalidation set self-reported0.136