YAML Metadata
Error:
"language[1]" must only contain lowercase characters
YAML Metadata
Error:
"language[1]" with value "ru-RU" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.
π Description
DialoGPT trained on Russian language and fine tuned on my telegram chat.
This model was created by sberbank-ai and trained on Russian forums (see Grossmend's model). You can find info about how it has been trained on habr (in Russian). I have created a simple pipeline and fine tuned that model on my own exported telegram chat (~30mb json). It is in fact very easy to get the data from telegram and fine tune a model. Therefore, I made a colab tutorial for it: https://colab.research.google.com/drive/1fnAVURjyZRK9VQg1Co_-SKUQnRES8l9R?usp=sharing
β οΈ Due to specifics of the data Hosted inference API may not work properly β οΈ
π€To try it use my Spaces demoπ€
β How to use with code
# Download model and tokenizer
checkpoint = "Kirili4ik/ruDialoGpt3-medium-finetuned-telegram"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
model.eval()
# util function to get expected len after tokenizing
def get_length_param(text: str, tokenizer) -> str:
tokens_count = len(tokenizer.encode(text))
if tokens_count <= 15:
len_param = '1'
elif tokens_count <= 50:
len_param = '2'
elif tokens_count <= 256:
len_param = '3'
else:
len_param = '-'
return len_param
# util function to get next person number (1/0) for Machine or Human in the dialogue
def get_user_param(text: dict, machine_name_in_chat: str) -> str:
if text['from'] == machine_name_in_chat:
return '1' # machine
else:
return '0' # human
chat_history_ids = torch.zeros((1, 0), dtype=torch.int)
while True:
next_who = input("Who's phrase?\t") #input("H / G?") # Human or GPT
# In case Human
if next_who == "H" or next_who == "Human":
input_user = input("===> Human: ")
# encode the new user input, add parameters and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(f"|0|{get_length_param(input_user, tokenizer)}|" \
+ input_user + tokenizer.eos_token, return_tensors="pt")
# append the new user input tokens to the chat history
chat_history_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1)
if next_who == "G" or next_who == "GPT":
next_len = input("Phrase len? 1/2/3/-\t") #input("Exp. len?(-/1/2/3): ")
# encode the new user input, add parameters and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(f"|1|{next_len}|", return_tensors="pt")
# append the new user input tokens to the chat history
chat_history_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1)
# print(tokenizer.decode(chat_history_ids[-1])) # uncomment to see full gpt input
# save previous len
input_len = chat_history_ids.shape[-1]
# generated a response; PS you can read about the parameters at hf.co/blog/how-to-generate
chat_history_ids = model.generate(
chat_history_ids,
num_return_sequences=1, # use for more variants, but have to print [i]
max_length=512,
no_repeat_ngram_size=3,
do_sample=True,
top_k=50,
top_p=0.9,
temperature = 0.6, # 0 for greedy
mask_token_id=tokenizer.mask_token_id,
eos_token_id=tokenizer.eos_token_id,
unk_token_id=tokenizer.unk_token_id,
pad_token_id=tokenizer.pad_token_id,
device='cpu'
)
# pretty print last ouput tokens from bot
print(f"===> GPT-3: {tokenizer.decode(chat_history_ids[:, input_len:][0], skip_special_tokens=True)}")
- Downloads last month
- 102
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.