Dataset
This model finetune on airesearch/WangchanThaiInstruct
23 sep 2024
Training details:
- epochs: 1
- learning rate: 2e-4
- learning rate scheduler type: linear
- Warmup ratio: 0.3
- cutoff len (i.e. context length): 2048
- global batch size: 8
- fine-tuning type: qlora
- optimizer: adamw_8bit
ps. 12 Hours from T4 Kaggle
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "Konthee/Qwen2.5-7B-ThaiInstruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id, torch_dtype="auto", device_map="auto"
)
messages = [
{"role": "user", "content": "สอนภาษาไทยหน่อย"},
]
input_ids = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=4096,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
Uploaded model
- Developed by: Konthee
- License: apache-2.0
- Finetuned from model : unsloth/Qwen2.5-7B-Instruct-bnb-4bit
This qwen2 model was trained 2x faster with Unsloth and Huggingface's TRL library.
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Konthee/Qwen2.5-7B-ThaiInstruct
Base model
Qwen/Qwen2.5-7B
Finetuned
Qwen/Qwen2.5-7B-Instruct
Quantized
unsloth/Qwen2.5-7B-Instruct-bnb-4bit