This is just a 6bpw EXL2 quant of the original model which can be found on my huggingface profile. I will write a real model card when I have the final model...it's an experimental tune using part of my sandevistan dataset.

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: meta-llama/Meta-Llama-3-8B

load_in_8bit: false
load_in_4bit: false
strict: false

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Kquant03/Sandevistan_Reformat
    type: customllama3_stan
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out
max_steps: 80000

fix_untrained_tokens: true

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

wandb_project: Pneuma
wandb_entity: 
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 16
micro_batch_size: 8
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00001
max_grad_norm: 1

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_sample_packing: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

hub_model_id: Replete-AI/L3-Pneuma-8B
hub_strategy: every_save

warmup_steps: 10
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<|begin_of_text|>"
  eos_token: "<|end_of_text|>"
  pad_token: "<|end_of_text|>"
tokens:

L3-Pneuma-8B

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the Sandevistan dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7381

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 743

Training results

Training Loss Epoch Step Validation Loss
1.0378 0.0013 1 3.0437
0.6816 0.3334 248 2.7341
0.6543 0.6667 496 2.7381

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kquant03/L3-Pneuma-8B-6bpw

Quantized
(240)
this model