NeuralShivaFusion-7B-Gradient-ST
NeuralShivaFusion-7B-Gradient-ST is a merge of the following models using LazyMergekit:
- Kukedlc/Neural-Krishna-Multiverse-7b
- Kukedlc/Neural-Krishna-Multiverse-7b-v2
- Kukedlc/Neural-Krishna-Multiverse-7b-v3
𧩠Configuration
models:
- model: Kukedlc/NeuralSirKrishna-7b
# no parameters necessary for base model
- model: Kukedlc/Neural-Krishna-Multiverse-7b
parameters:
density: 0.65
weight: 0.36
- model: Kukedlc/Neural-Krishna-Multiverse-7b-v2
parameters:
density: 0.6
weight: 0.34
- model: Kukedlc/Neural-Krishna-Multiverse-7b-v3
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: Kukedlc/NeuralSirKrishna-7b
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralShivaFusion-7B-Gradient-ST"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.