Model Sources
- Paper: LLaMAX: Scaling Linguistic Horizons of LLM by Enhancing Translation Capabilities Beyond 100 Languages
- Link: https://arxiv.org/pdf/2407.05975
- Repository: https://github.com/CONE-MT/LLaMAX/
Model Description
🔥 LLaMAX-7B-X-NLI is a NLI model with multilingual capability, which is fully fine-tuned the powerful multilingual model LLaMAX-7B on MultiNLI dataset.
🔥 Compared with fine-tuning Llama-2 on the same setting, LLaMAX-7B-X-CSQA improves the average accuracy up to 5.6% on the XNLI dataset.
Experiments
XNLI | Avg. | Sw | Ur | Hi | Th | Ar | Tr | El | Vi | Zh | Ru | Bg | De | Fr | Es | En |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Llama2-7B-X-XNLI | 70.6 | 44.6 | 55.1 | 62.2 | 58.4 | 64.7 | 64.9 | 65.6 | 75.4 | 75.9 | 78.9 | 78.6 | 80.7 | 81.7 | 83.1 | 89.5 |
LLaMAX-7B-X-XNLI | 76.2 | 66.7 | 65.3 | 69.1 | 66.2 | 73.6 | 71.8 | 74.3 | 77.4 | 78.3 | 80.3 | 81.6 | 82.2 | 83.0 | 84.1 | 89.7 |
Model Usage
Code Example:
from transformers import AutoTokenizer, LlamaForCausalLM
model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
query = "Premise: She doesn’t really understand. Hypothesis: Actually, she doesn’t get it. Label:"
inputs = tokenizer(query, return_tensors="pt")
generate_ids = model.generate(inputs.input_ids, max_length=30)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# => Entailment
Citation
if our model helps your work, please cite this paper:
@article{lu2024llamax,
title={LLaMAX: Scaling Linguistic Horizons of LLM by Enhancing Translation Capabilities Beyond 100 Languages},
author={Lu, Yinquan and Zhu, Wenhao and Li, Lei and Qiao, Yu and Yuan, Fei},
journal={arXiv preprint arXiv:2407.05975},
year={2024}
}
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.