metadata
tags:
- ltx-video
- text-to-video
- image-to-video
pinned: true
language:
- en
LTX-Video Model Card
This model card focuses on the model associated with the LTX-Video model, codebase available here.
Model Details
- Developed by: Lightricks
- Model type: Diffusion-based text-to-video and image-to-video generation model
- Language(s): English
- Model Description: LTX-Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content.
Usage
Setup
The codebase was tested with Python 3.10.5, CUDA version 12.2, and supports PyTorch >= 2.1.2.
Installation
git clone https://github.com/LightricksResearch/LTX-Video.git
cd ltx_video-core
# create env
python -m venv env
source env/bin/activate
python -m pip install -e .\[inference-script\]
Then, download the model from Hugging Face
from huggingface_hub import snapshot_download
model_path = 'PATH' # The local directory to save downloaded checkpoint
snapshot_download("Lightricks/LTX-Video", local_dir=model_path, local_dir_use_symlinks=False, repo_type='model')
Inference
Inference Code
To use our model, please follow the inference code in inference.py
at https://github.com/LightricksResearch/LTX-Video/blob/main/inference.py:
For text-to-video generation:
python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --height HEIGHT --width WIDTH
For image-to-video generation:
python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --input_image_path IMAGE_PATH --height HEIGHT --width WIDTH