LTX-Video / README.md
Sapir's picture
Create README.md
1f93419 verified
|
raw
history blame
1.92 kB
---
tags:
- ltx-video
- text-to-video
- image-to-video
pinned: true
language:
- en
---
# LTX-Video Model Card
This model card focuses on the model associated with the LTX-Video model, codebase available [here](https://github.com/Lightricks/LTX-Video).
## Model Details
- **Developed by:** Lightricks
- **Model type:** Diffusion-based text-to-video and image-to-video generation model
- **Language(s):** English
- **Model Description:** LTX-Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content.
## Usage
### Setup
The codebase was tested with Python 3.10.5, CUDA version 12.2, and supports PyTorch >= 2.1.2.
#### Installation
```bash
git clone https://github.com/LightricksResearch/LTX-Video.git
cd ltx_video-core
# create env
python -m venv env
source env/bin/activate
python -m pip install -e .\[inference-script\]
```
Then, download the model from [Hugging Face](https://huggingface.co/Lightricks/LTX-Video)
```python
from huggingface_hub import snapshot_download
model_path = 'PATH' # The local directory to save downloaded checkpoint
snapshot_download("Lightricks/LTX-Video", local_dir=model_path, local_dir_use_symlinks=False, repo_type='model')
```
### Inference
#### Inference Code
To use our model, please follow the inference code in `inference.py` at [https://github.com/LightricksResearch/LTX-Video/blob/main/inference.py]():
For text-to-video generation:
```bash
python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --height HEIGHT --width WIDTH
```
For image-to-video generation:
```python
python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --input_image_path IMAGE_PATH --height HEIGHT --width WIDTH
```