|
---
|
|
tags:
|
|
- ltx-video
|
|
- text-to-video
|
|
- image-to-video
|
|
pinned: true
|
|
language:
|
|
- en
|
|
---
|
|
|
|
# LTX-Video Model Card |
|
This model card focuses on the model associated with the LTX-Video model, codebase available [here](https://github.com/Lightricks/LTX-Video). |
|
|
|
|
|
## Model Details |
|
- **Developed by:** Lightricks |
|
- **Model type:** Diffusion-based text-to-video and image-to-video generation model |
|
- **Language(s):** English |
|
- **Model Description:** LTX-Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. |
|
|
|
|
|
## Usage |
|
|
|
### Setup |
|
The codebase was tested with Python 3.10.5, CUDA version 12.2, and supports PyTorch >= 2.1.2. |
|
|
|
#### Installation |
|
|
|
```bash |
|
git clone https://github.com/LightricksResearch/LTX-Video.git |
|
cd ltx_video-core |
|
|
|
# create env |
|
python -m venv env |
|
source env/bin/activate |
|
python -m pip install -e .\[inference-script\] |
|
``` |
|
|
|
Then, download the model from [Hugging Face](https://huggingface.co/Lightricks/LTX-Video) |
|
|
|
```python |
|
from huggingface_hub import snapshot_download |
|
|
|
model_path = 'PATH' # The local directory to save downloaded checkpoint |
|
snapshot_download("Lightricks/LTX-Video", local_dir=model_path, local_dir_use_symlinks=False, repo_type='model') |
|
``` |
|
|
|
### Inference |
|
|
|
#### Inference Code |
|
|
|
To use our model, please follow the inference code in `inference.py` at [https://github.com/LightricksResearch/LTX-Video/blob/main/inference.py](): |
|
|
|
For text-to-video generation: |
|
|
|
```bash |
|
python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --height HEIGHT --width WIDTH |
|
``` |
|
|
|
For image-to-video generation: |
|
|
|
```python |
|
python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --input_image_path IMAGE_PATH --height HEIGHT --width WIDTH |
|
|
|
``` |