autoevaluator
HF staff
Add evaluation results on the lener_br config and validation split of lener_br
e00c303
language: | |
- pt | |
license: mit | |
tags: | |
- generated_from_trainer | |
datasets: | |
- lener_br | |
metrics: | |
- precision | |
- recall | |
- f1 | |
- accuracy | |
model_index: | |
- name: bertimbau-base-lener_br | |
results: | |
- task: | |
name: Token Classification | |
type: token-classification | |
dataset: | |
name: lener_br | |
type: lener_br | |
args: lener_br | |
metric: | |
name: Accuracy | |
type: accuracy | |
value: 0.9692504609383333 | |
model-index: | |
- name: Luciano/bertimbau-base-lener_br | |
results: | |
- task: | |
type: token-classification | |
name: Token Classification | |
dataset: | |
name: lener_br | |
type: lener_br | |
config: lener_br | |
split: test | |
metrics: | |
- name: Accuracy | |
type: accuracy | |
value: 0.9824282794418222 | |
verified: true | |
- name: Precision | |
type: precision | |
value: 0.9877557596262284 | |
verified: true | |
- name: Recall | |
type: recall | |
value: 0.9870401674313772 | |
verified: true | |
- name: F1 | |
type: f1 | |
value: 0.9873978338768773 | |
verified: true | |
- name: loss | |
type: loss | |
value: 0.11542011797428131 | |
verified: true | |
- task: | |
type: token-classification | |
name: Token Classification | |
dataset: | |
name: lener_br | |
type: lener_br | |
config: lener_br | |
split: validation | |
metrics: | |
- name: Accuracy | |
type: accuracy | |
value: 0.9692504609383333 | |
verified: true | |
- name: Precision | |
type: precision | |
value: 0.9786866842043531 | |
verified: true | |
- name: Recall | |
type: recall | |
value: 0.9840619998315222 | |
verified: true | |
- name: F1 | |
type: f1 | |
value: 0.9813669814173863 | |
verified: true | |
- name: loss | |
type: loss | |
value: 0.22302456200122833 | |
verified: true | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# bertimbau-base-lener_br | |
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.2298 | |
- Precision: 0.8501 | |
- Recall: 0.9138 | |
- F1: 0.8808 | |
- Accuracy: 0.9693 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 4 | |
- eval_batch_size: 4 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 15 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | | |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | |
| 0.0686 | 1.0 | 1957 | 0.1399 | 0.7759 | 0.8669 | 0.8189 | 0.9641 | | |
| 0.0437 | 2.0 | 3914 | 0.1457 | 0.7997 | 0.8938 | 0.8441 | 0.9623 | | |
| 0.0313 | 3.0 | 5871 | 0.1675 | 0.8466 | 0.8744 | 0.8603 | 0.9651 | | |
| 0.0201 | 4.0 | 7828 | 0.1621 | 0.8713 | 0.8839 | 0.8775 | 0.9718 | | |
| 0.0137 | 5.0 | 9785 | 0.1811 | 0.7783 | 0.9159 | 0.8415 | 0.9645 | | |
| 0.0105 | 6.0 | 11742 | 0.1836 | 0.8568 | 0.9009 | 0.8783 | 0.9692 | | |
| 0.0105 | 7.0 | 13699 | 0.1649 | 0.8339 | 0.9125 | 0.8714 | 0.9725 | | |
| 0.0059 | 8.0 | 15656 | 0.2298 | 0.8501 | 0.9138 | 0.8808 | 0.9693 | | |
| 0.0051 | 9.0 | 17613 | 0.2210 | 0.8437 | 0.9045 | 0.8731 | 0.9693 | | |
| 0.0061 | 10.0 | 19570 | 0.2499 | 0.8627 | 0.8946 | 0.8784 | 0.9681 | | |
| 0.0041 | 11.0 | 21527 | 0.1985 | 0.8560 | 0.9052 | 0.8799 | 0.9720 | | |
| 0.003 | 12.0 | 23484 | 0.2204 | 0.8498 | 0.9065 | 0.8772 | 0.9699 | | |
| 0.0014 | 13.0 | 25441 | 0.2152 | 0.8425 | 0.9067 | 0.8734 | 0.9709 | | |
| 0.0005 | 14.0 | 27398 | 0.2317 | 0.8553 | 0.8987 | 0.8765 | 0.9705 | | |
| 0.0015 | 15.0 | 29355 | 0.2436 | 0.8543 | 0.8989 | 0.8760 | 0.9700 | | |
### Framework versions | |
- Transformers 4.8.2 | |
- Pytorch 1.9.0+cu102 | |
- Datasets 1.9.0 | |
- Tokenizers 0.10.3 | |