Luciano's picture
Commit using trainer.push_to_hub()
1d5f0cd
|
raw
history blame
1.98 kB
---
license: mit
tags:
- generated_from_trainer
datasets:
- lener_br
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: bertimbau-large-lener_br
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lener_br
type: lener_br
args: lener_br
metric:
name: Accuracy
type: accuracy
value: 0.9744464930592591
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertimbau-large-lener_br
This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the lener_br dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1193
- Precision: 0.8287
- Recall: 0.9144
- F1: 0.8694
- Accuracy: 0.9744
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0586 | 1.0 | 1957 | 0.1409 | 0.8317 | 0.8725 | 0.8516 | 0.9667 |
| 0.0304 | 2.0 | 3914 | 0.1338 | 0.7137 | 0.9172 | 0.8027 | 0.9619 |
| 0.0119 | 3.0 | 5871 | 0.1193 | 0.8287 | 0.9144 | 0.8694 | 0.9744 |
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0+cu102
- Datasets 1.9.0
- Tokenizers 0.10.3