Edit model card

Model Card for Model ID

base_model : Ko-Llama3-Luxia-8B

Basic usage

# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("MDDDDR/Ko-Luxia-8B-it-v0.1")
model = AutoModelForCausalLM.from_pretrained(
    "MDDDDR/Ko-Luxia-8B-it-v0.1",
    device_map="auto",
    torch_dtype=torch.bfloat16
)

input_text = "사과가 뭐야?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Training dataset

dataset : kyujinpy/KOpen-platypus

lora_config and bnb_config in Training

bnd_config = BitsAndBytesConfig(
  load_in_4bit = True,
  bnb_4bit_use_double_quant = True,
  bnb_4bit_quant_type = 'nf4',
  bnb_4bit_compute_dtype = torch.bfloat16
)

lora_config = LoraConfig(
  r = 16,
  lora_alpha = 16,
  lora_dropout = 0.05,
  target_modules = ['gate_proj', 'up_proj', 'down_proj']
)

Hardware

RTX 3090 Ti 24GB x 1

Evaluation Benchmark Results

Tasks Version Filter n-shot Metric Value Stderr
kobest_boolq 1 none 0 acc 0.6425 ± 0.0128
none 0 f1 0.6054 ± N/A
kobest_copa 1 none 0 acc 0.7340 ± 0.0140
none 0 f1 0.7333 ± N/A
kobest_hellaswag 1 none 0 acc 0.4760 ± 0.0224
none 0 acc_norm 0.6120 ± 0.0218
none 0 f1 0.4745 ± N/A
kobest_sentineg 1 none 0 acc 0.5894 ± 0.0247
none 0 f1 0.5682 ± N/A
Downloads last month
9
Safetensors
Model size
8.17B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MDDDDR/Ko-Luxia-8B-it-v0.1

Quantizations
1 model

Dataset used to train MDDDDR/Ko-Luxia-8B-it-v0.1