Edit model card

t5-large-finetuned-break-qdmr-decomposition

This model is a fine-tuned version of t5-large on the break_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1729
  • Bleu: 0.2217
  • Brevity Penalty: 0.2926
  • Length Ratio: 0.4487
  • Translation Length: 108954
  • Reference Length: 242845

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bleu Brevity Penalty Length Ratio Translation Length Reference Length
No log 1.0 346 0.2217 0.2190 0.2973 0.4519 109738 242845
0.3597 2.0 692 0.1898 0.2213 0.2944 0.4499 109245 242845
0.1943 3.0 1038 0.1780 0.2213 0.2936 0.4494 109125 242845
0.1943 4.0 1385 0.1722 0.2209 0.2926 0.4486 108943 242845
0.1588 5.0 1731 0.1708 0.2221 0.2938 0.4495 109159 242845
0.1395 6.0 2077 0.1699 0.2209 0.2907 0.4473 108635 242845
0.1395 7.0 2423 0.1699 0.2219 0.2927 0.4487 108964 242845
0.1245 8.0 2770 0.1717 0.2215 0.2924 0.4485 108909 242845
0.1152 9.0 3116 0.1724 0.2215 0.2924 0.4485 108914 242845
0.1152 9.99 3460 0.1729 0.2217 0.2926 0.4487 108954 242845

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
3
Safetensors
Model size
738M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train MatthisHoules/t5-large-finetuned-break-qdmr-decomposition

Evaluation results