Edit model card

llama2-7b-dpo-full-sft-wo-kqa_silver_wogold

This model is a fine-tuned version of Minbyul/llama2-7b-wo-kqa_silver_wogold-sft on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4452
  • Rewards/chosen: -0.0311
  • Rewards/rejected: -1.1476
  • Rewards/accuracies: 0.9418
  • Rewards/margins: 1.1165
  • Logps/rejected: -714.4130
  • Logps/chosen: -108.8849
  • Logits/rejected: -0.4047
  • Logits/chosen: -0.9197

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.2705 0.93 100 0.4456 -0.0307 -1.1443 0.9418 1.1136 -714.0911 -108.8464 -0.4045 -0.9202

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Minbyul/llama2-7b-dpo-full-sft-wo-kqa_silver_wogold

Finetuned
(1)
this model

Dataset used to train Minbyul/llama2-7b-dpo-full-sft-wo-kqa_silver_wogold