lrl-modelcloud's picture
Update README.md
73c1bb4 verified
|
raw
history blame
1.55 kB
metadata
license: llama3.2
language:
  - en
  - de
  - fr
  - it
  - pt
  - hi
  - es
  - th
base_model:
  - meta-llama/Llama-3.2-3B-Instruct
pipeline_tag: text-generation
tags:
  - gptqmodel
  - modelcloud
  - llama3.2
  - instruct
  - int4

image/png

This model has been quantized using GPTQModel.

  • bits: 4
  • dynamic: null
  • group_size: 32
  • desc_act: true
  • static_groups: false
  • sym: true
  • lm_head: false
  • true_sequential: true
  • quant_method: "gptq"
  • checkpoint_format: "gptq"
  • meta

Example:

from transformers import AutoTokenizer
from gptqmodel import GPTQModel

model_name = "ModelCloud/Llama-3.2-3B-Instruct-gptqmodel-4bit-vortex-v3"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = GPTQModel.from_quantized(model_name)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)

print(result)