|
--- |
|
license: llama3.2 |
|
language: |
|
- en |
|
- de |
|
- fr |
|
- it |
|
- pt |
|
- hi |
|
- es |
|
- th |
|
base_model: |
|
- meta-llama/Llama-3.2-3B-Instruct |
|
pipeline_tag: text-generation |
|
tags: |
|
- gptqmodel |
|
- modelcloud |
|
- llama3.2 |
|
- instruct |
|
- int4 |
|
--- |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/641c13e7999935676ec7bc03/SCTn0F8MhToDFbdjuPxkw.png) |
|
|
|
This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel). |
|
|
|
- **bits**: 4 |
|
- **dynamic**: null |
|
- **group_size**: 32 |
|
- **desc_act**: true |
|
- **static_groups**: false |
|
- **sym**: true |
|
- **lm_head**: false |
|
- **true_sequential**: true |
|
- **quant_method**: "gptq" |
|
- **checkpoint_format**: "gptq" |
|
- **meta**: |
|
- **quantizer**: gptqmodel:1.1.0 |
|
- **uri**: https://github.com/modelcloud/gptqmodel |
|
- **damp_percent**: 0.1 |
|
- **damp_auto_increment**: 0.0015 |
|
|
|
|
|
## Example: |
|
```python |
|
from transformers import AutoTokenizer |
|
from gptqmodel import GPTQModel |
|
|
|
model_name = "ModelCloud/Llama-3.2-3B-Instruct-gptqmodel-4bit-vortex-v3" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = GPTQModel.from_quantized(model_name) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") |
|
|
|
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512) |
|
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) |
|
|
|
print(result) |
|
``` |
|
|