Qubitium's picture
Update README.md
58b9cee verified
|
raw
history blame
1.9 kB
metadata
license: apache-2.0
license_link: https://huggingface.co/Qwen/QwQ-32B-Preview/blob/main/LICENSE
language:
  - en
base_model:
  - Qwen/QwQ-32B-Preview
pipeline_tag: text-generation
tags:
  - gptqmodel
  - modelcloud
  - chat
  - qwen2
  - qwq
  - instruct
  - int4
  - gptq
  - 4bit

๐Ÿ› Update: We have discovered a regression in the QwQ quant that may output extra strings such as "Edited Text" that was result of invalid calibration data auto-injected by our vortex pipeline. v2 of the quant is undergoing benchmark evaluations and will be released soon.

image/png

This model has been quantized using GPTQModel.

  • bits: 4
  • dynamic: null
  • group_size: 32
  • desc_act: true
  • static_groups: false
  • sym: true
  • lm_head: false
  • true_sequential: true
  • quant_method: "gptq"
  • checkpoint_format: "gptq"
  • meta๏ผš

Example:

from transformers import AutoTokenizer
from gptqmodel import GPTQModel

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = GPTQModel.load("ModelCloud/QwQ-32B-Preview-GPTQ-4bit")

messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)

print(result)