MARBERT-QADI / README.md
MohamedAtta-AI's picture
Model save
e435660 verified
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
model-index:
  - name: MARBERT-QADI
    results: []

MARBERT-QADI

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0342
  • Macro F1: 0.5099
  • Accuracy: 0.5138
  • Recall: 0.5136
  • Precision: 0.6223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-06
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Macro F1 Accuracy Recall Precision
0.8588 1.0 1125 0.7883 0.7550 0.7554 0.7552 0.7609
0.7475 2.0 2250 0.7718 0.7632 0.7634 0.7631 0.7653
0.6527 3.0 3375 0.7758 0.7668 0.7673 0.7671 0.7679
0.5654 4.0 4500 0.7845 0.7665 0.7673 0.7671 0.7682
0.5001 5.0 5625 0.8068 0.7650 0.7663 0.7660 0.7657
0.4641 6.0 6750 0.8216 0.7647 0.7658 0.7655 0.7650
0.4049 7.0 7875 0.8393 0.7645 0.7654 0.7649 0.7657
0.3773 8.0 9000 0.8477 0.7651 0.7657 0.7654 0.7659
0.3393 9.0 10125 0.8569 0.7663 0.7669 0.7665 0.7670
0.3383 10.0 11250 0.8589 0.7663 0.7669 0.7666 0.7667

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1