Phi-3-Instruct-Bloated

Phi-3-Instruct-Bloated is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: microsoft/Phi-3-mini-128k-instruct
        layer_range: [0, 32]
      - model: NexaAIDev/Octopus-v4
        layer_range: [0, 32]
merge_method: slerp
base_model: microsoft/Phi-3-mini-128k-instruct
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

# Installation
!pip install -qU transformers accelerate

# Imports
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Loading
tokenizer = AutoTokenizer.from_pretrained("MrOvkill/Phi-3-Instruct-Bloated")
model = AutoModelForCausalLM.from_pretrained("MrOvkill/Phi-3-Instruct-Bloated")

# Completion function
def infer(prompt, **kwargs):
    inputs = tokenizer(prompt, return_tensors="pt")
    with torch.no_grad():
        outputs = model.generate(**inputs, **kwargs)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Some silliness
infer("<|user|>\nBen is going to the store for some Ice Cream. So is Jerry. They mix up the ice cream at the store. Is the ice cream: (a. Ben's (b. Jerry's (c. Ben and Jerry's <|end|>\n<|assistant|>\nMy answer is (", max_new_tokens=1024)

# A proper test
infer(
    """
<|user|>
Explain what a Mixture of Experts is in less than 100 words.
<|assistant|>
""",
    max_new_tokens=1024,
    do_sample=False,
    temperature=0.0,
    top_k=50,
    top_p=0.89,
)
Downloads last month
15
Safetensors
Model size
3.82B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MrOvkill/Phi-3-Instruct-Bloated