ReferenceSegmentationLarge / modeling_refseg.py
MrPotato's picture
commit files to HF hub
a310541
from transformers.models.xlm_roberta import XLMRobertaPreTrainedModel, XLMRobertaModel
from transformers.modeling_outputs import TokenClassifierOutput
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from typing import Optional, Tuple, Union
class XLMRobertaForReferenceSegmentation(XLMRobertaPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels_first = config.num_labels_first
self.num_labels_second = config.num_labels_second
self.alpha = config.alpha
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier_first = nn.Linear(config.hidden_size, self.num_labels_first)
self.classifier_second = nn.Linear(config.hidden_size, self.num_labels_second)
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels_first: Optional[torch.LongTensor] = None,
labels_second: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output_first = self.dropout(sequence_output)
logits_first = self.classifier_first(sequence_output_first)
sequence_output_second = self.dropout(sequence_output)
logits_second = self.classifier_second(sequence_output_second)
loss = None
if labels_first is not None and labels_second is not None:
loss_fct_first = CrossEntropyLoss()
loss_fct_second = CrossEntropyLoss()
loss_first = loss_fct_first(logits_first.view(-1, self.num_labels_first), labels_first.view(-1))
loss_second = loss_fct_second(logits_second.view(-1, self.num_labels_second), labels_second.view(-1))
loss = loss_first + (self.alpha * loss_second)
return TokenClassifierOutput(
loss=loss,
logits=[logits_first, logits_second],
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)