NanoLM-1B-Instruct-v2

English | 简体中文

Introduction

In order to explore the potential of small models, I have attempted to build a series of them, which are available in the NanoLM Collections.

This is NanoLM-1B-Instruct-v2, fine-tuned on over 4 million high-quality instruction data points.

The model currently supports English only.

Model Details

Nano LMs Non-emb Params Arch Layers Dim Heads Seq Len
25M 15M MistralForCausalLM 12 312 12 2K
70M 42M LlamaForCausalLM 12 576 9 2K
0.3B 180M Qwen2ForCausalLM 12 896 14 4K
1B 840M Qwen2ForCausalLM 18 1536 12 4K

Metrics

NanoLM-1B-Instruct-v2 Tinyllama-1.1B Gemma-2B Qwen1.5-1.8B Qwen2-1.5B Qwen1.5-4B Mistral-7B-v0.1 Mistral-7B-v0.3 Qwen1.5-7B
GSM8K 44.1 2.3 17.7 33.6 55.8 52.2 37.83 34.5 53.5
MATH 14.8 0.7 11.8 10.1 21.7 10.0 8.48 - 20.3
BBH 0.42 0.30 0.35 0.35 0.36 0.41 0.44 0.45 0.46

How to use

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = 'Mxode/NanoLM-1B-Instruct-v2'

model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_path)


def get_response(prompt: str, **kwargs):
    generation_args = dict(
        max_new_tokens = kwargs.pop("max_new_tokens", 512),
        do_sample = kwargs.pop("do_sample", True),
        temperature = kwargs.pop("temperature", 0.7),
        top_p = kwargs.pop("top_p", 0.8),
        top_k = kwargs.pop("top_k", 40),
        **kwargs
    )

    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    generated_ids = model.generate(model_inputs.input_ids, **generation_args)
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]

    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return response


prompt = "Calculate (99 - 1) * (3 + 4)"
print(get_response(prompt, do_sample=False))

"""
To calculate \((99 - 1) * (3 + 4)\), follow the order of operations, also known as PEMDAS (Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction).

First, solve the expressions inside the parentheses:

1. \(99 - 1 = 98\)
2. \(3 + 4 = 7\)

Now, multiply the results:

\(98 * 7 = 686\)

So, \((99 - 1) * (3 + 4) = 686\).
"""
Downloads last month
36
Safetensors
Model size
1.08B params
Tensor type
BF16
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for Mxode/NanoLM-1B-Instruct-v2

Quantizations
1 model

Dataset used to train Mxode/NanoLM-1B-Instruct-v2

Collection including Mxode/NanoLM-1B-Instruct-v2