metadata
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: A boy wearing climbing gear climbs by a wooden pole.
sentences:
- A person wearing climbing gear climbs by a wooden pole.
- A man holds up a tent pole.
- A man plays an instrument.
- source_sentence: Asian men saying hello to each other.
sentences:
- Asian men are about to attend a convention.
- One man is working on a wrist watch to repair it.
- A white male dog is following a black female dog because she is in heat.
- source_sentence: >-
A woman in a white shirt and red jeans is carrying a plastic bag and
cellphone while walking along the street by art prints.
sentences:
- The people are sitting on a couch
- The man is walking down the street with a plastic bag.
- A man wants to join in the conversation
- source_sentence: Girl in a thin rowboat leaving the dock of a lake.
sentences:
- >-
A man in a solid white shirt and two black-haired boys pose for pictures
inside.
- The ladies are having a conversation.
- The girl is sitting on the shore of the lake.
- source_sentence: A large crowd watches as a couple tap dances together on a wooden floor.
sentences:
- People are leaving the restaurant.
- A man crashes his car into the grocery store.
- A man swings a golf club.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: snli dev
type: snli-dev
metrics:
- type: pearson_cosine
value: 0.5007411996817115
name: Pearson Cosine
- type: spearman_cosine
value: 0.49310662404125943
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4737846265333258
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4923216703895389
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.47496147875492195
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.4931066240443629
name: Spearman Euclidean
- type: pearson_dot
value: 0.500741200773276
name: Pearson Dot
- type: spearman_dot
value: 0.49310655847757945
name: Spearman Dot
- type: pearson_max
value: 0.500741200773276
name: Pearson Max
- type: spearman_max
value: 0.4931066240443629
name: Spearman Max
SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nessrine9/finetuned2-MiniLM-L12-v2")
# Run inference
sentences = [
'A large crowd watches as a couple tap dances together on a wooden floor.',
'A man swings a golf club.',
'A man crashes his car into the grocery store.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
snli-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5007 |
spearman_cosine | 0.4931 |
pearson_manhattan | 0.4738 |
spearman_manhattan | 0.4923 |
pearson_euclidean | 0.475 |
spearman_euclidean | 0.4931 |
pearson_dot | 0.5007 |
spearman_dot | 0.4931 |
pearson_max | 0.5007 |
spearman_max | 0.4931 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 100,000 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 16.85 tokens
- max: 67 tokens
- min: 5 tokens
- mean: 10.61 tokens
- max: 29 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label A biker is practicing a trick while his friend watch him as his audience.
man riding the bike to show his talent to his girlfriend.
0.5
A man in a brown jacket standing in front of an open porch door.
A man is standing in front of the porch door.
0.0
Two men and three children are at the beach.
Five people enjoying their vacation.
0.5
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | snli-dev_spearman_max |
---|---|---|---|
0.08 | 500 | 0.1807 | 0.3001 |
0.16 | 1000 | 0.1497 | 0.3646 |
0.24 | 1500 | 0.1443 | 0.3652 |
0.32 | 2000 | 0.1394 | 0.3860 |
0.4 | 2500 | 0.1369 | 0.3810 |
0.48 | 3000 | 0.1346 | 0.3895 |
0.56 | 3500 | 0.1358 | 0.4147 |
0.64 | 4000 | 0.1387 | 0.4190 |
0.72 | 4500 | 0.131 | 0.4254 |
0.8 | 5000 | 0.1314 | 0.4219 |
0.88 | 5500 | 0.1288 | 0.4342 |
0.96 | 6000 | 0.1299 | 0.4135 |
1.0 | 6250 | - | 0.4393 |
1.04 | 6500 | 0.1306 | 0.4565 |
1.12 | 7000 | 0.1253 | 0.4433 |
1.2 | 7500 | 0.1275 | 0.4486 |
1.28 | 8000 | 0.1265 | 0.4616 |
1.3600 | 8500 | 0.1237 | 0.4462 |
1.44 | 9000 | 0.1223 | 0.4573 |
1.52 | 9500 | 0.123 | 0.4609 |
1.6 | 10000 | 0.1251 | 0.4678 |
1.6800 | 10500 | 0.1262 | 0.4500 |
1.76 | 11000 | 0.1194 | 0.4696 |
1.8400 | 11500 | 0.1206 | 0.4733 |
1.92 | 12000 | 0.118 | 0.4701 |
2.0 | 12500 | 0.1238 | 0.4688 |
2.08 | 13000 | 0.1191 | 0.4646 |
2.16 | 13500 | 0.1179 | 0.4757 |
2.24 | 14000 | 0.1177 | 0.4652 |
2.32 | 14500 | 0.1176 | 0.4873 |
2.4 | 15000 | 0.115 | 0.4674 |
2.48 | 15500 | 0.1141 | 0.4784 |
2.56 | 16000 | 0.1143 | 0.4824 |
2.64 | 16500 | 0.1184 | 0.4898 |
2.7200 | 17000 | 0.1124 | 0.4818 |
2.8 | 17500 | 0.1141 | 0.4905 |
2.88 | 18000 | 0.1115 | 0.4850 |
2.96 | 18500 | 0.1123 | 0.4867 |
3.0 | 18750 | - | 0.4867 |
3.04 | 19000 | 0.1149 | 0.4849 |
3.12 | 19500 | 0.1114 | 0.4888 |
3.2 | 20000 | 0.1124 | 0.4903 |
3.2800 | 20500 | 0.1124 | 0.4900 |
3.36 | 21000 | 0.1088 | 0.4871 |
3.44 | 21500 | 0.1065 | 0.4835 |
3.52 | 22000 | 0.1075 | 0.4912 |
3.6 | 22500 | 0.1115 | 0.4944 |
3.68 | 23000 | 0.1122 | 0.4932 |
3.76 | 23500 | 0.1074 | 0.4917 |
3.84 | 24000 | 0.1081 | 0.4923 |
3.92 | 24500 | 0.1057 | 0.4921 |
4.0 | 25000 | 0.1118 | 0.4931 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}