Nessrine9's picture
Finetuned model on SNLI
471bf48 verified
---
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: A boy wearing climbing gear climbs by a wooden pole.
sentences:
- A person wearing climbing gear climbs by a wooden pole.
- A man holds up a tent pole.
- A man plays an instrument.
- source_sentence: Asian men saying hello to each other.
sentences:
- Asian men are about to attend a convention.
- One man is working on a wrist watch to repair it.
- A white male dog is following a black female dog because she is in heat.
- source_sentence: A woman in a white shirt and red jeans is carrying a plastic bag
and cellphone while walking along the street by art prints.
sentences:
- The people are sitting on a couch
- The man is walking down the street with a plastic bag.
- A man wants to join in the conversation
- source_sentence: Girl in a thin rowboat leaving the dock of a lake.
sentences:
- A man in a solid white shirt and two black-haired boys pose for pictures inside.
- The ladies are having a conversation.
- The girl is sitting on the shore of the lake.
- source_sentence: A large crowd watches as a couple tap dances together on a wooden
floor.
sentences:
- People are leaving the restaurant.
- A man crashes his car into the grocery store.
- A man swings a golf club.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: snli dev
type: snli-dev
metrics:
- type: pearson_cosine
value: 0.5007411996817115
name: Pearson Cosine
- type: spearman_cosine
value: 0.49310662404125943
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4737846265333258
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4923216703895389
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.47496147875492195
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.4931066240443629
name: Spearman Euclidean
- type: pearson_dot
value: 0.500741200773276
name: Pearson Dot
- type: spearman_dot
value: 0.49310655847757945
name: Spearman Dot
- type: pearson_max
value: 0.500741200773276
name: Pearson Max
- type: spearman_max
value: 0.4931066240443629
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision 30ce63ae64e71b9199b3d2eae9de99f64a26eedc -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nessrine9/finetuned2-MiniLM-L12-v2")
# Run inference
sentences = [
'A large crowd watches as a couple tap dances together on a wooden floor.',
'A man swings a golf club.',
'A man crashes his car into the grocery store.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `snli-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.5007 |
| spearman_cosine | 0.4931 |
| pearson_manhattan | 0.4738 |
| spearman_manhattan | 0.4923 |
| pearson_euclidean | 0.475 |
| spearman_euclidean | 0.4931 |
| pearson_dot | 0.5007 |
| spearman_dot | 0.4931 |
| pearson_max | 0.5007 |
| **spearman_max** | **0.4931** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 100,000 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 7 tokens</li><li>mean: 16.85 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.61 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:---------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-----------------|
| <code>A biker is practicing a trick while his friend watch him as his audience.</code> | <code>man riding the bike to show his talent to his girlfriend.</code> | <code>0.5</code> |
| <code>A man in a brown jacket standing in front of an open porch door.</code> | <code>A man is standing in front of the porch door.</code> | <code>0.0</code> |
| <code>Two men and three children are at the beach.</code> | <code>Five people enjoying their vacation.</code> | <code>0.5</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | snli-dev_spearman_max |
|:------:|:-----:|:-------------:|:---------------------:|
| 0.08 | 500 | 0.1807 | 0.3001 |
| 0.16 | 1000 | 0.1497 | 0.3646 |
| 0.24 | 1500 | 0.1443 | 0.3652 |
| 0.32 | 2000 | 0.1394 | 0.3860 |
| 0.4 | 2500 | 0.1369 | 0.3810 |
| 0.48 | 3000 | 0.1346 | 0.3895 |
| 0.56 | 3500 | 0.1358 | 0.4147 |
| 0.64 | 4000 | 0.1387 | 0.4190 |
| 0.72 | 4500 | 0.131 | 0.4254 |
| 0.8 | 5000 | 0.1314 | 0.4219 |
| 0.88 | 5500 | 0.1288 | 0.4342 |
| 0.96 | 6000 | 0.1299 | 0.4135 |
| 1.0 | 6250 | - | 0.4393 |
| 1.04 | 6500 | 0.1306 | 0.4565 |
| 1.12 | 7000 | 0.1253 | 0.4433 |
| 1.2 | 7500 | 0.1275 | 0.4486 |
| 1.28 | 8000 | 0.1265 | 0.4616 |
| 1.3600 | 8500 | 0.1237 | 0.4462 |
| 1.44 | 9000 | 0.1223 | 0.4573 |
| 1.52 | 9500 | 0.123 | 0.4609 |
| 1.6 | 10000 | 0.1251 | 0.4678 |
| 1.6800 | 10500 | 0.1262 | 0.4500 |
| 1.76 | 11000 | 0.1194 | 0.4696 |
| 1.8400 | 11500 | 0.1206 | 0.4733 |
| 1.92 | 12000 | 0.118 | 0.4701 |
| 2.0 | 12500 | 0.1238 | 0.4688 |
| 2.08 | 13000 | 0.1191 | 0.4646 |
| 2.16 | 13500 | 0.1179 | 0.4757 |
| 2.24 | 14000 | 0.1177 | 0.4652 |
| 2.32 | 14500 | 0.1176 | 0.4873 |
| 2.4 | 15000 | 0.115 | 0.4674 |
| 2.48 | 15500 | 0.1141 | 0.4784 |
| 2.56 | 16000 | 0.1143 | 0.4824 |
| 2.64 | 16500 | 0.1184 | 0.4898 |
| 2.7200 | 17000 | 0.1124 | 0.4818 |
| 2.8 | 17500 | 0.1141 | 0.4905 |
| 2.88 | 18000 | 0.1115 | 0.4850 |
| 2.96 | 18500 | 0.1123 | 0.4867 |
| 3.0 | 18750 | - | 0.4867 |
| 3.04 | 19000 | 0.1149 | 0.4849 |
| 3.12 | 19500 | 0.1114 | 0.4888 |
| 3.2 | 20000 | 0.1124 | 0.4903 |
| 3.2800 | 20500 | 0.1124 | 0.4900 |
| 3.36 | 21000 | 0.1088 | 0.4871 |
| 3.44 | 21500 | 0.1065 | 0.4835 |
| 3.52 | 22000 | 0.1075 | 0.4912 |
| 3.6 | 22500 | 0.1115 | 0.4944 |
| 3.68 | 23000 | 0.1122 | 0.4932 |
| 3.76 | 23500 | 0.1074 | 0.4917 |
| 3.84 | 24000 | 0.1081 | 0.4923 |
| 3.92 | 24500 | 0.1057 | 0.4921 |
| 4.0 | 25000 | 0.1118 | 0.4931 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->