zephyr-7b-uf-rlced-conifer-1e2e-group-dpo-2e

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the data/zephyr_uf_rlced_conifer_ref_1e2e dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2626
  • Rewards/chosen: -2.1843
  • Rewards/rejected: -5.4288
  • Rewards/accuracies: 0.8684
  • Rewards/margins: 3.2445
  • Logps/rejected: -946.6157
  • Logps/chosen: -610.9032
  • Logits/rejected: 1.2318
  • Logits/chosen: -0.7806
  • Excess Loss: 0.0374
  • Alpha 0 Uf: 0.8470
  • Alpha 1 Rlced Conifer: 0.1530
  • Rewards/chosen 1 Rlced Conifer: -2.2281
  • Rewards/rejected 1 Rlced Conifer: -6.0246
  • Rewards/accuracies 1 Rlced Conifer: 0.8987
  • Rewards/margins 1 Rlced Conifer: 3.7965
  • Logps/rejected 1 Rlced Conifer: -1049.9939
  • Logps/chosen 1 Rlced Conifer: -646.3860
  • Logits/rejected 1 Rlced Conifer: 1.1158
  • Logits/chosen 1 Rlced Conifer: -0.9982
  • Task Loss 1 Rlced Conifer: 0.2102
  • Task Excess Loss 1 Rlced Conifer: 0.0475
  • Rewards/chosen 0 Uf: -1.9978
  • Rewards/rejected 0 Uf: -3.3091
  • Rewards/accuracies 0 Uf: 0.7603
  • Rewards/margins 0 Uf: 1.3113
  • Logps/rejected 0 Uf: -572.5212
  • Logps/chosen 0 Uf: -489.0419
  • Logits/rejected 0 Uf: 1.8243
  • Logits/chosen 0 Uf: -0.1004
  • Task Loss 0 Uf: 0.4944
  • Task Excess Loss 0 Uf: 0.0469

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Excess Loss Alpha 0 Uf Alpha 1 Rlced Conifer Rewards/chosen 1 Rlced Conifer Rewards/rejected 1 Rlced Conifer Rewards/accuracies 1 Rlced Conifer Rewards/margins 1 Rlced Conifer Logps/rejected 1 Rlced Conifer Logps/chosen 1 Rlced Conifer Logits/rejected 1 Rlced Conifer Logits/chosen 1 Rlced Conifer Task Loss 1 Rlced Conifer Task Excess Loss 1 Rlced Conifer Rewards/chosen 0 Uf Rewards/rejected 0 Uf Rewards/accuracies 0 Uf Rewards/margins 0 Uf Logps/rejected 0 Uf Logps/chosen 0 Uf Logits/rejected 0 Uf Logits/chosen 0 Uf Task Loss 0 Uf Task Excess Loss 0 Uf
0.1953 0.4997 360 0.3535 -1.5938 -3.1996 0.8402 1.6058 -723.6984 -551.8521 0.1112 -0.7863 0.1136 0.9694 0.0306 -1.5989 -3.4179 0.8677 1.8190 -789.3262 -583.4747 -0.1145 -0.9516 0.3087 0.1414 -1.5520 -2.3972 0.7448 0.8452 -481.3242 -444.4588 1.0137 -0.2527 0.5289 0.0768
0.1537 0.9993 720 0.3329 -1.4289 -3.2979 0.8609 1.8690 -733.5210 -535.3586 0.6830 -0.5276 0.0943 0.9852 0.0148 -1.4038 -3.4887 0.8869 2.0849 -796.4048 -563.9600 0.3914 -0.7372 0.2955 0.1278 -1.4972 -2.5982 0.7618 1.1009 -501.4233 -438.9818 1.8477 0.1514 0.4804 0.0530
0.0667 1.4990 1080 0.2667 -2.1402 -5.1839 0.8656 3.0437 -922.1221 -606.4852 1.0002 -0.7884 0.0408 0.8954 0.1046 -2.1729 -5.7323 0.8964 3.5594 -1020.7665 -640.8754 0.8903 -0.9784 0.2150 0.0521 -1.9916 -3.2293 0.7574 1.2377 -564.5363 -488.4239 1.5582 -0.1961 0.4940 0.0466
0.06 1.9986 1440 0.2626 -2.1843 -5.4288 0.8684 3.2445 -946.6157 -610.9032 1.2318 -0.7806 0.0374 0.8470 0.1530 -2.2281 -6.0246 0.8987 3.7965 -1049.9939 -646.3860 1.1158 -0.9982 0.2102 0.0475 -1.9978 -3.3091 0.7603 1.3113 -572.5212 -489.0419 1.8243 -0.1004 0.4944 0.0469

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
21
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NicholasCorrado/zephyr-7b-uf-rlced-conifer-1e2e-group-dpo-2e

Finetuned
(301)
this model