|
--- |
|
language: |
|
- vi |
|
|
|
tags: |
|
- t5 |
|
- seq2seq |
|
|
|
# Machine translation for vietnamese |
|
## Model Description |
|
T5-vi-en-base is a transformer model for vietnamese machine translation designed using T5 architecture. |
|
## Training data |
|
T5-vi-en-base was trained on 4M sentence pairs (english,vietnamese) |
|
### How to use |
|
|
|
```py |
|
from transformers import T5ForConditionalGeneration, T5Tokenizer |
|
import torch |
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
|
|
print('There are %d GPU(s) available.' % torch.cuda.device_count()) |
|
|
|
print('We will use the GPU:', torch.cuda.get_device_name(0)) |
|
else: |
|
print('No GPU available, using the CPU instead.') |
|
device = torch.device("cpu") |
|
|
|
model = T5ForConditionalGeneration.from_pretrained("NlpHUST/t5-vi-en-base") |
|
tokenizer = T5Tokenizer.from_pretrained("NlpHUST/t5-vi-en-base") |
|
model.to(device) |
|
|
|
src = "Theo lãnh đạo Sở Y tế, 3 người này không có triệu chứng sốt, ho, khó thở, đã được lấy mẫu xét nghiệm và cách ly tập trung." |
|
tokenized_text = tokenizer.encode(src, return_tensors="pt").to(device) |
|
model.eval() |
|
summary_ids = model.generate( |
|
tokenized_text, |
|
max_length=256, |
|
num_beams=5, |
|
repetition_penalty=2.5, |
|
length_penalty=1.0, |
|
early_stopping=True |
|
) |
|
output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
print(output) |
|
|
|
According to the head of the Department of Health, the three people had no symptoms of fever, cough, shortness of breath, were taken samples for testing and concentrated quarantine. |
|
``` |