|
--- |
|
license: mit |
|
language: |
|
- en |
|
--- |
|
|
|
# dolly-v2-3b-fp16-ov |
|
|
|
* Model creator: [Databricks](https://huggingface.co/databricks) |
|
* Original model: [dolly-v2-3b](https://huggingface.co/databricks/dolly-v2-3b) |
|
|
|
## Description |
|
|
|
This is [dolly-v2-3b](https://huggingface.co/databricks/dolly-v2-3b) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format. |
|
|
|
## Compatibility |
|
|
|
The provided OpenVINO™ IR model is compatible with: |
|
|
|
* OpenVINO version 2024.1.0 and higher |
|
* Optimum Intel 1.16.0 and higher |
|
|
|
## Running Model Inference |
|
|
|
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: |
|
|
|
``` |
|
pip install optimum[openvino] |
|
``` |
|
|
|
2. Run model inference: |
|
|
|
``` |
|
from transformers import AutoTokenizer |
|
from optimum.intel.openvino import OVModelForCausalLM |
|
|
|
model_id = "OpenVINO/dolly-v2-3b-fp16-ov" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = OVModelForCausalLM.from_pretrained(model_id) |
|
|
|
inputs = tokenizer("What is OpenVINO?", return_tensors="pt") |
|
|
|
outputs = model.generate(**inputs, max_length=200) |
|
text = tokenizer.batch_decode(outputs)[0] |
|
print(text) |
|
``` |
|
|
|
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html). |
|
|
|
## Limitations |
|
|
|
Check the original model card for [limitations](https://huggingface.co/databricks/dolly-v2-3b#known-limitations). |
|
|
|
## Legal information |
|
|
|
The original model is distributed under mit license. More details can be found in [original model card](https://huggingface.co/databricks/dolly-v2-3b). |