language: el
datasets:
- common_voice
- CSS10
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Greek XLSR Wav2Vec2 Large 53 - CV + CSS10
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice el
type: common_voice
args: el
metrics:
- name: Test WER
type: wer
value: 20.89
Wav2Vec2-Large-XLSR-53-greek
Fine-tuned facebook/wav2vec2-large-xlsr-53 on greek using the Common Voice and CSS10 datasets. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "el", split="test")
processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the greek test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "el", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 20.89 %
Training
The Common Voice train
, validation
, and CSS10 datasets were used for training, added as extra
split to the dataset. The sampling rate and format of the CSS10 files is different, hence the function speech_file_to_array_fn
was changed to:
def speech_file_to_array_fn(batch):
try:
speech_array, sampling_rate = sf.read(batch["path"] + ".wav")
except:
speech_array, sampling_rate = librosa.load(batch["path"], sr = 16000, res_type='zero_order_hold')
sf.write(batch["path"] + ".wav", speech_array, sampling_rate, subtype='PCM_24')
batch["speech"] = speech_array
batch["sampling_rate"] = sampling_rate
batch["target_text"] = batch["text"]
return batch
As suggested by Florian Zimmermeister.
The script used for training can be found in run_common_voice.py, still pending of PR. The only changes are to speech_file_to_array_fn
. Batch size was kept at 32 (using gradient_accumulation_steps
) using one of the OVH machines, with a V100 GPU (thank you very much OVH). The model trained for 40 epochs, the first 20 with the train+validation
splits, and then extra
split was added with the data from CSS10 at the 20th epoch.