QCRI
/

LlamaLens: Specialized Multilingual LLM forAnalyzing News and Social Media Content

Overview

LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 19 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.

capablities_tasks_datasets

Dataset

The model was trained on the LlamaLens dataset.

To Replicate the Experiments

The code to replicate the experiments is available on GitHub.

Model Inference

To utilize the LlamaLens model for inference, follow these steps:

  1. Install the Required Libraries:

    Ensure you have the necessary libraries installed. You can do this using pip:

    pip install transformers torch
    
  2. Load the Model and Tokenizer:: Use the transformers library to load the LlamaLens model and its tokenizer:

from transformers import pipeline

model_name = "QCRI/LlamaLens"
pipe = pipeline("text-generation", model=model_name)
  1. Prepare the Input:: Tokenize your input text:
input_text = "Your input text here"
system_message = "Your system message text here"
messages = [
    {"role": "system", "content": system_message},
    {"role": "user", "content": input_text},
]

  1. Generate the Output:: Generate a response using the model:
generated_text = pipe(messages, num_return_sequences=1)
print(generated_text)

Results

Below, we present the performance of LlamaLens compared to existing SOTA (if available) and the Llama-Instruct baseline, The “Delta” column here is calculated as (LLamalens – SOTA).


Arabic

Task Dataset Metric SOTA Llama-instruct LLamalens Delta (LLamalens - SOTA)
News Summarization xlsum R-2 0.137 0.034 0.075 -0.062
News Genre ASND Ma-F1 0.770 0.587 0.938 0.168
News Genre SANADAkhbarona Acc 0.940 0.784 0.922 -0.018
News Genre SANADAlArabiya Acc 0.974 0.893 0.986 0.012
News Genre SANADAlkhaleej Acc 0.986 0.865 0.967 -0.019
News Genre UltimateDataset Ma-F1 0.970 0.376 0.883 -0.087
News Credibility NewsCredibility Acc 0.899 0.455 0.494 -0.405
Emotion Emotional-Tone W-F1 0.658 0.358 0.748 0.090
Emotion NewsHeadline Acc 1.000 0.406 0.551 -0.449
Sarcasm ArSarcasm-v2 F1_Pos 0.584 0.477 0.307 -0.277
Sentiment ar_reviews_100k F1_Pos 0.343 0.665
Sentiment ArSAS Acc 0.920 0.603 0.795 -0.125
Stance stance Ma-F1 0.767 0.608 0.936 0.169
Stance Mawqif-Arabic-Stance Ma-F1 0.789 0.764 0.867 0.078
Att.worthiness CT22Attentionworthy W-F1 0.412 0.158 0.544 0.132
Checkworthiness CT24_T1 F1_Pos 0.569 0.404 0.877 0.308
Claim CT22Claim Acc 0.703 0.581 0.778 0.075
Factuality Arafacts Mi-F1 0.850 0.210 0.534 -0.316
Factuality COVID19Factuality W-F1 0.831 0.492 0.781 -0.050
Propaganda ArPro Mi-F1 0.767 0.597 0.762 -0.005
Cyberbullying ArCyc_CB Acc 0.863 0.766 0.753 -0.110
Harmfulness CT22Harmful F1_Pos 0.557 0.507 0.508 -0.049
Hate Speech annotated-hatetweets-4 W-F1 0.630 0.257 0.549 -0.081
Hate Speech OSACT4SubtaskB Mi-F1 0.950 0.819 0.802 -0.148
Offensive ArCyc_OFF Ma-F1 0.878 0.489 0.652 -0.226
Offensive OSACT4SubtaskA Ma-F1 0.905 0.782 0.899 -0.006

English

Task Dataset Metric SOTA Llama-instruct LLamalens Delta (LLamalens - SOTA)
News Summarization xlsum R-2 0.152 0.074 0.141 -0.011
News Genre CNN_News_Articles Acc 0.940 0.644 0.915 -0.025
News Genre News_Category Ma-F1 0.769 0.970 0.505 -0.264
News Genre SemEval23T3-ST1 Mi-F1 0.815 0.687 0.241 -0.574
Subjectivity CT24_T2 Ma-F1 0.744 0.535 0.508 -0.236
Emotion emotion Ma-F1 0.790 0.353 0.878 0.088
Sarcasm News-Headlines Acc 0.897 0.668 0.956 0.059
Sentiment NewsMTSC Ma-F1 0.817 0.628 0.627 -0.190
Checkworthiness CT24_T1 F1_Pos 0.753 0.404 0.877 0.124
Claim claim-detection Mi-F1 0.545 0.915
Factuality News_dataset Acc 0.920 0.654 0.946 0.026
Factuality Politifact W-F1 0.490 0.121 0.290 -0.200
Propaganda QProp Ma-F1 0.667 0.759 0.851 0.184
Cyberbullying Cyberbullying Acc 0.907 0.175 0.847 -0.060
Offensive Offensive_Hateful Mi-F1 0.692 0.805
Offensive offensive_language Mi-F1 0.994 0.646 0.884 -0.110
Offensive & Hate hate-offensive-speech Acc 0.945 0.602 0.924 -0.021

Hindi

Task Dataset Metric SOTA Llama-instruct LLamalens Delta (LLamalens - SOTA)
NLI NLI_dataset W-F1 0.646 0.633 0.655 0.009
News Summarization xlsum R-2 0.136 0.078 0.117 -0.019
Sentiment Sentiment Analysis Acc 0.697 0.552 0.669 -0.028
Factuality fake-news Mi-F1 0.759 0.713
Hate Speech hate-speech-detection Mi-F1 0.639 0.750 0.994 0.355
Hate Speech Hindi-Hostility W-F1 0.841 0.469 0.720 -0.121
Offensive Offensive Speech Mi-F1 0.723 0.621 0.847 0.124
Cyberbullying MC_Hinglish1 Acc 0.609 0.233 0.587 -0.022

Paper

For an in-depth understanding, refer to our paper: LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content.

License

This model is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Citation

Please cite our paper when using this model:

   @article{kmainasi2024llamalensspecializedmultilingualllm,
     title={LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content},
     author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Maram Hasanain and Sahinur Rahman Laskar and Naeemul Hassan and Firoj Alam},
     year={2024},
     journal={arXiv preprint arXiv:2410.15308},
     volume={},
     number={},
     pages={},
     url={https://arxiv.org/abs/2410.15308},
     eprint={2410.15308},
     archivePrefix={arXiv},
     primaryClass={cs.CL}
   }
Downloads last month
16
Safetensors
Model size
8.03B params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for QCRI/LlamaLens

Finetuned
(580)
this model

Datasets used to train QCRI/LlamaLens