LlamaLens: Specialized Multilingual LLM forAnalyzing News and Social Media Content
Overview
LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 19 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
Dataset
The model was trained on the LlamaLens dataset.
To Replicate the Experiments
The code to replicate the experiments is available on GitHub.
Model Inference
To utilize the LlamaLens model for inference, follow these steps:
Install the Required Libraries:
Ensure you have the necessary libraries installed. You can do this using pip:
pip install transformers torch
Load the Model and Tokenizer:: Use the transformers library to load the LlamaLens model and its tokenizer:
from transformers import pipeline
model_name = "QCRI/LlamaLens"
pipe = pipeline("text-generation", model=model_name)
- Prepare the Input:: Tokenize your input text:
input_text = "Your input text here"
system_message = "Your system message text here"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": input_text},
]
- Generate the Output:: Generate a response using the model:
generated_text = pipe(messages, num_return_sequences=1)
print(generated_text)
Results
Below, we present the performance of LlamaLens compared to existing SOTA (if available) and the Llama-Instruct baseline, The “Delta” column here is calculated as (LLamalens – SOTA).
Arabic
Task | Dataset | Metric | SOTA | Llama-instruct | LLamalens | Delta (LLamalens - SOTA) |
---|---|---|---|---|---|---|
News Summarization | xlsum | R-2 | 0.137 | 0.034 | 0.075 | -0.062 |
News Genre | ASND | Ma-F1 | 0.770 | 0.587 | 0.938 | 0.168 |
News Genre | SANADAkhbarona | Acc | 0.940 | 0.784 | 0.922 | -0.018 |
News Genre | SANADAlArabiya | Acc | 0.974 | 0.893 | 0.986 | 0.012 |
News Genre | SANADAlkhaleej | Acc | 0.986 | 0.865 | 0.967 | -0.019 |
News Genre | UltimateDataset | Ma-F1 | 0.970 | 0.376 | 0.883 | -0.087 |
News Credibility | NewsCredibility | Acc | 0.899 | 0.455 | 0.494 | -0.405 |
Emotion | Emotional-Tone | W-F1 | 0.658 | 0.358 | 0.748 | 0.090 |
Emotion | NewsHeadline | Acc | 1.000 | 0.406 | 0.551 | -0.449 |
Sarcasm | ArSarcasm-v2 | F1_Pos | 0.584 | 0.477 | 0.307 | -0.277 |
Sentiment | ar_reviews_100k | F1_Pos | – | 0.343 | 0.665 | – |
Sentiment | ArSAS | Acc | 0.920 | 0.603 | 0.795 | -0.125 |
Stance | stance | Ma-F1 | 0.767 | 0.608 | 0.936 | 0.169 |
Stance | Mawqif-Arabic-Stance | Ma-F1 | 0.789 | 0.764 | 0.867 | 0.078 |
Att.worthiness | CT22Attentionworthy | W-F1 | 0.412 | 0.158 | 0.544 | 0.132 |
Checkworthiness | CT24_T1 | F1_Pos | 0.569 | 0.404 | 0.877 | 0.308 |
Claim | CT22Claim | Acc | 0.703 | 0.581 | 0.778 | 0.075 |
Factuality | Arafacts | Mi-F1 | 0.850 | 0.210 | 0.534 | -0.316 |
Factuality | COVID19Factuality | W-F1 | 0.831 | 0.492 | 0.781 | -0.050 |
Propaganda | ArPro | Mi-F1 | 0.767 | 0.597 | 0.762 | -0.005 |
Cyberbullying | ArCyc_CB | Acc | 0.863 | 0.766 | 0.753 | -0.110 |
Harmfulness | CT22Harmful | F1_Pos | 0.557 | 0.507 | 0.508 | -0.049 |
Hate Speech | annotated-hatetweets-4 | W-F1 | 0.630 | 0.257 | 0.549 | -0.081 |
Hate Speech | OSACT4SubtaskB | Mi-F1 | 0.950 | 0.819 | 0.802 | -0.148 |
Offensive | ArCyc_OFF | Ma-F1 | 0.878 | 0.489 | 0.652 | -0.226 |
Offensive | OSACT4SubtaskA | Ma-F1 | 0.905 | 0.782 | 0.899 | -0.006 |
English
Task | Dataset | Metric | SOTA | Llama-instruct | LLamalens | Delta (LLamalens - SOTA) |
---|---|---|---|---|---|---|
News Summarization | xlsum | R-2 | 0.152 | 0.074 | 0.141 | -0.011 |
News Genre | CNN_News_Articles | Acc | 0.940 | 0.644 | 0.915 | -0.025 |
News Genre | News_Category | Ma-F1 | 0.769 | 0.970 | 0.505 | -0.264 |
News Genre | SemEval23T3-ST1 | Mi-F1 | 0.815 | 0.687 | 0.241 | -0.574 |
Subjectivity | CT24_T2 | Ma-F1 | 0.744 | 0.535 | 0.508 | -0.236 |
Emotion | emotion | Ma-F1 | 0.790 | 0.353 | 0.878 | 0.088 |
Sarcasm | News-Headlines | Acc | 0.897 | 0.668 | 0.956 | 0.059 |
Sentiment | NewsMTSC | Ma-F1 | 0.817 | 0.628 | 0.627 | -0.190 |
Checkworthiness | CT24_T1 | F1_Pos | 0.753 | 0.404 | 0.877 | 0.124 |
Claim | claim-detection | Mi-F1 | – | 0.545 | 0.915 | – |
Factuality | News_dataset | Acc | 0.920 | 0.654 | 0.946 | 0.026 |
Factuality | Politifact | W-F1 | 0.490 | 0.121 | 0.290 | -0.200 |
Propaganda | QProp | Ma-F1 | 0.667 | 0.759 | 0.851 | 0.184 |
Cyberbullying | Cyberbullying | Acc | 0.907 | 0.175 | 0.847 | -0.060 |
Offensive | Offensive_Hateful | Mi-F1 | – | 0.692 | 0.805 | – |
Offensive | offensive_language | Mi-F1 | 0.994 | 0.646 | 0.884 | -0.110 |
Offensive & Hate | hate-offensive-speech | Acc | 0.945 | 0.602 | 0.924 | -0.021 |
Hindi
Task | Dataset | Metric | SOTA | Llama-instruct | LLamalens | Delta (LLamalens - SOTA) |
---|---|---|---|---|---|---|
NLI | NLI_dataset | W-F1 | 0.646 | 0.633 | 0.655 | 0.009 |
News Summarization | xlsum | R-2 | 0.136 | 0.078 | 0.117 | -0.019 |
Sentiment | Sentiment Analysis | Acc | 0.697 | 0.552 | 0.669 | -0.028 |
Factuality | fake-news | Mi-F1 | – | 0.759 | 0.713 | – |
Hate Speech | hate-speech-detection | Mi-F1 | 0.639 | 0.750 | 0.994 | 0.355 |
Hate Speech | Hindi-Hostility | W-F1 | 0.841 | 0.469 | 0.720 | -0.121 |
Offensive | Offensive Speech | Mi-F1 | 0.723 | 0.621 | 0.847 | 0.124 |
Cyberbullying | MC_Hinglish1 | Acc | 0.609 | 0.233 | 0.587 | -0.022 |
Paper
For an in-depth understanding, refer to our paper: LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content.
License
This model is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Citation
Please cite our paper when using this model:
@article{kmainasi2024llamalensspecializedmultilingualllm,
title={LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content},
author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Maram Hasanain and Sahinur Rahman Laskar and Naeemul Hassan and Firoj Alam},
year={2024},
journal={arXiv preprint arXiv:2410.15308},
volume={},
number={},
pages={},
url={https://arxiv.org/abs/2410.15308},
eprint={2410.15308},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 16
Model tree for QCRI/LlamaLens
Base model
meta-llama/Llama-3.1-8B