Edit model card

QuantFactory/Llama-3-13B-Instruct-v0.1-GGUF

This is quantized version of MaziyarPanahi/Llama-3-13B-Instruct-v0.1 created using llama.cpp

Original Model Card

Goku 8x22B v0.1 Logo

Llama-3-13B-Instruct-v0.1

This model is a self-merge of meta-llama/Meta-Llama-3-8B-Instruct model.

How to use

You can use this model by using MaziyarPanahi/Llama-3-13B-Instruct-v0.1 as the model name in Hugging Face's transformers library.

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch

model_id = "MaziyarPanahi/Llama-3-13B-Instruct-v0.1"

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True,
    # attn_implementation="flash_attention_2"
)

tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    trust_remote_code=True
)

streamer = TextStreamer(tokenizer)

pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    model_kwargs={"torch_dtype": torch.bfloat16},
    streamer=streamer
)

# Then you can use the pipeline to generate text.

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.95,
)
print(outputs[0]["generated_text"][len(prompt):])

Prompt template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>

what's 25-4*2+3<|eot_id|><|start_header_id|>assistant<|end_header_id|>

To evaluate this expression, we need to follow the order of operations (PEMDAS):

1. First, multiply 4 and 2: 4*2 = 8
2. Then, subtract 8 from 25: 25 - 8 = 17
3. Finally, add 3: 17 + 3 = 20

So, 25-4*2+3 = 20!<|eot_id|>
To evaluate this expression, we need to follow the order of operations (PEMDAS):

1. First, multiply 4 and 2: 4*2 = 8
2. Then, subtract 8 from 25: 25 - 8 = 17
3. Finally, add 3: 17 + 3 = 20

So, 25-4*2+3 = 20!
Downloads last month
159
GGUF
Model size
13.3B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for QuantFactory/Llama-3-13B-Instruct-v0.1-GGUF

Quantized
(178)
this model