Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4

Introduction

Qwen1.5-MoE is a transformer-based MoE decoder-only language model pretrained on a large amount of data.

For more details, please refer to our blog post and GitHub repo.

Model Details

Qwen1.5-MoE employs Mixture of Experts (MoE) architecture, where the models are upcycled from dense language models. For instance, Qwen1.5-MoE-A2.7B is upcycled from Qwen-1.8B. It has 14.3B parameters in total and 2.7B activated parameters during runtime, while achieching comparable performance to Qwen1.5-7B, it only requires 25% of the training resources. We also observed that the inference speed is 1.74 times that of Qwen1.5-7B.

Training details

We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.

Requirements

The code of Qwen1.5-MoE has been in the latest Hugging face transformers and we advise you to build from source with command pip install git+https://github.com/huggingface/transformers, or you might encounter the following error:

KeyError: 'qwen2_moe'.

Quickstart

Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.

from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4")

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

Tips

  • If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in generation_config.json.
Downloads last month
81
Safetensors
Model size
2.47B params
Tensor type
FP16
Β·
I32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using Qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4 5

Collection including Qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4