1 - # alpaca_prompt = Copied from above FastLanguageModel.for_inference(model) # Enable native 2x faster inference inputs = tokenizer( [ alpaca_prompt.format(

"Continue the fibonnaci sequence.", # instruction

"1, 1, 2, 3, 5, 8", # input

    "", # output - leave this blank for generation!
)

], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 128, use_cache = True) tokenizer.batch_decode(outputs)

['Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Input:\nContinue the fibonnaci sequence.\n\n### Output:\n1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196728, 318101']

2 - # alpaca_prompt = Copied from above FastLanguageModel.for_inference(model) # Enable native 2x faster inference inputs = tokenizer( [ alpaca_prompt.format(

"What is fibonacci sequence?", # instruction

    "", # input
    "", # output - leave this blank for generation!
)

], return_tensors = "pt").to("cuda")

from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 256)

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

Input:

What is fibonacci sequence?

Output:

The Fibonacci sequence is a series of numbers in which each number is the sum of the two preceding ones, usually starting with 0 and 1. The sequence goes like this: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196728, 328101, 544829, 973530, 1518361, 2492891, 4011452, 6504307, 9518768, 15023075

3 - if False: from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained( model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference

alpaca_prompt = You MUST copy from above!

inputs = tokenizer( [ alpaca_prompt.format(

"Crie uma IA. Ela será treinada para conversar por chat e escrever códigos em python conforme solicitada, após ser treinada para essas tarefas.", # instruction

    "", # input
    "", # output - leave this blank for generation!
)

], return_tensors = "pt").to("cuda")

from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 4096)

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

Input:

Crie uma IA. Ela será treinada para conversar por chat e escrever codigos em python conforme solicitada, após ser treinada para essas tarefas.

Output:

Here is a simple Python program that uses the OpenAI's ChatGPT API to simulate a chatbot:

import openai
from openai import ChatGPT

# Initialize the ChatGPT API
openai.api_key = "YOUR_API_KEY"

# Create a ChatGPT model
model = ChatGPT(model_name="gpt-3.5-turbo")

# Create a prompt
prompt = "Write a python program that takes a number as input and prints out the square of that number."

# Send the prompt to the ChatGPT model
response = model.create(input=prompt)

# Print the response
print(response)

This program will output a Python program that takes a number as input and prints out the square of that number.<|endoftext|>

Uploaded model

  • Developed by: Ramikan-BR
  • License: apache-2.0
  • Finetuned from model : unsloth/qwen2-0.5b-bnb-4bit

This qwen2 model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
8
Safetensors
Model size
494M params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.