llama3_darulm_20_05_24_part1-2_128000_bpe_full_lr2e4_bs256
This model is a fine-tuned version of RefalMachine/llama3_darulm_20_05_24_part1-2_128000_bpe_mean_init_03_07_24 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3015
- Accuracy: 0.5256
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.6896 | 0.05 | 2000 | 2.4747 | 0.5036 |
2.627 | 0.1 | 4000 | 2.4208 | 0.5091 |
2.5808 | 0.14 | 6000 | 2.3954 | 0.5122 |
2.5783 | 0.19 | 8000 | 2.3773 | 0.5148 |
2.5749 | 0.24 | 10000 | 2.3623 | 0.5165 |
2.5491 | 0.29 | 12000 | 2.3518 | 0.5183 |
2.526 | 0.34 | 14000 | 2.3425 | 0.5192 |
2.5316 | 0.38 | 16000 | 2.3346 | 0.5203 |
2.5107 | 0.43 | 18000 | 2.3266 | 0.5218 |
2.5155 | 0.48 | 20000 | 2.3210 | 0.5225 |
2.5063 | 0.53 | 22000 | 2.3153 | 0.5237 |
2.493 | 0.57 | 24000 | 2.3102 | 0.5242 |
2.5019 | 0.62 | 26000 | 2.3072 | 0.5247 |
2.5044 | 0.67 | 28000 | 2.3048 | 0.5250 |
2.4799 | 0.72 | 30000 | 2.3033 | 0.5254 |
2.4993 | 0.77 | 32000 | 2.3023 | 0.5255 |
2.5174 | 0.81 | 34000 | 2.3018 | 0.5256 |
2.4938 | 0.86 | 36000 | 2.3016 | 0.5256 |
2.5055 | 0.91 | 38000 | 2.3015 | 0.5256 |
2.5061 | 0.96 | 40000 | 2.3015 | 0.5256 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.