llama3_darulm_20_05_24_part1-2_128000_bpe_full_lr2e4_bs256_v2
This model is a fine-tuned version of RefalMachine/llama3_darulm_20_05_24_part1-2_128000_bpe_mean_init_03_07_24 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.2964
- Accuracy: 0.5265
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.6784 | 0.05 | 2000 | 2.4673 | 0.5042 |
2.6272 | 0.1 | 4000 | 2.4140 | 0.5105 |
2.6223 | 0.15 | 6000 | 2.3865 | 0.5135 |
2.5819 | 0.2 | 8000 | 2.3685 | 0.5156 |
2.5634 | 0.25 | 10000 | 2.3553 | 0.5173 |
2.5613 | 0.3 | 12000 | 2.3443 | 0.5189 |
2.535 | 0.35 | 14000 | 2.3345 | 0.5203 |
2.5538 | 0.4 | 16000 | 2.3257 | 0.5218 |
2.5338 | 0.45 | 18000 | 2.3177 | 0.5228 |
2.5211 | 0.5 | 20000 | 2.3122 | 0.5237 |
2.4976 | 0.55 | 22000 | 2.3071 | 0.5247 |
2.5078 | 0.6 | 24000 | 2.3032 | 0.5251 |
2.5185 | 0.65 | 26000 | 2.3003 | 0.5256 |
2.4853 | 0.7 | 28000 | 2.2987 | 0.5261 |
2.502 | 0.75 | 30000 | 2.2971 | 0.5264 |
2.4958 | 0.8 | 32000 | 2.2967 | 0.5264 |
2.5082 | 0.85 | 34000 | 2.2965 | 0.5263 |
2.497 | 0.9 | 36000 | 2.2963 | 0.5264 |
2.4879 | 0.96 | 38000 | 2.2963 | 0.5265 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.